Stephen Prata Sixth Edition

C++

Primer Plus

Developer’s Library

C++ Primer Plus

Sixth Edition

’ -
Developer’s Library
ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development Python Essential Reference
Luke Welling & Laura Thomson David Beazley

ISBN-13: 978-0-672-32916-6 ISBN-13: 978-0-672-32862-6
MySQL PostgreSQL

Paul DuBois Korry Douglas

ISBN-13: 978-0-672-32938-8 ISBN-13: 978-0-672-32756-8
Linux Kernel Development C++ Primer Plus

Robert Love Stephen Prata

ISBN-13: 978-0-672-32946-3 ISBN-13: 978-0-321-77640-2

Developer’s Library books are available at most retail and online bookstores, as well
as by subscription from Safari Books Online at safari.informit.com.

Developer’s
Library

informit.com/devlibrary

C++ Primer Plus

Sixth Edition

Stephen Prata

vvAddison-Wesley

Upper Saddle River, NJ ¢ Boston ¢ Indianapolis * San Francisco
New York ¢ Toronto * Montreal * London ¢ Munich ¢ Paris « Madrid
Cape Town ¢ Sydney * Tokyo ¢ Singapore * Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw.
Library of Congress Cataloging-in-Publication data is on file.
Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. To obtain permission to use materi-
al from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236-3290.

ISBN-13: 978-0-321-77640-2
ISBN-10: 0-321-77640-2

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.

Second printing: January 2012

Acquisitions Editor
Mark Taber

Development
Editor

Michael Thurston
Managing Editor
Kristy Hart
Project Editors
Samantha
Sinkhorn

Jovana Shirley

Copy Editor
Bart Reed

Indexer
Lisa Stumpf

Proofreader
Language
Logistics, LLC
Technical Reviewer
David Horvath

Publishing
Coordinator

Vanessa Evans

Cover Designer
Gary Adair

Compositor
Nonie Ratcliff

0,
0‘0

To my parents, with love.

0,
0.0

Contents at a Glance

10

11

12

13

14

15

16

17

18

Introduction 1

Getting Started with C++ 9

Setting Out to C++ 27

Dealing with Data 65

Compound Types 115

Loops and Relational Expressions 195
Branching Statements and Logical Operators 253
Functions: C++’s Programming Modules 305
Adventures in Functions 379

Memory Models and Namespaces 447
Objects and Classes 505

Working with Classes 563

Classes and Dynamic Memory Allocation 627
Class Inheritance 707

Reusing Code in C++ 785

Friends, Exceptions, and More 877

The string Class and the Standard
Template Library 951

Input, Output, and Files 1061

Visiting with the New C++ Standard 1153

Appendixes

A

Number Bases 1215

C++ Reserved Words 1221

The ASCII Character Set 1225
Operator Precedence 1231
Other Operators 1235

The string Template Class 1249

The Standard Template Library Methods and
Functions 1271

Selected Readings and Internet Resources 1323
Converting to ISO Standard C++ 1327
Answers to Chapter Reviews 1335

Index 1367

Table of Contents

Introduction 1

1 Getting Started with C++ 9
Learning C++: What Lies Before You 10
The Origins of C++: A Little History 10
Portability and Standards 15
The Mechanics of Creating a Program 18
Summary 25

2 Setting Out to C++ 27
C++ Initiation 27
C++ Statements 41
More C++ Statements 45
Functions 48
Summary 61
Chapter Review 62
Programming Exercises 62

3 Dealing with Data 65
Simple Variables 66
The const Qualifier 90
Floating-Point Numbers 92
C++ Arithmetic Operators 97
Summary 109
Chapter Review 110
Programming Exercises 111

4 Compound Types 115
Introducing Arrays 116
Strings 120
Introducing the string Class 131
Introducing Structures 140
Unions 149
Enumerations 150
Pointers and the Free Store 153
Pointers, Arrays, and Pointer Arithmetic 167
Combinations of Types 184
Array Alternatives 186
Summary 190
Chapter Review 191
Programming Exercises 192

Contents

5 Loops and Relational Expressions 195

Introducing for Loops 196

The while Loop 224

The do while Loop 231

The Range-Based for Loop (C++11) 233
Loops and Text Input 234

Nested Loops and Two-Dimensional Arrays 244
Summary 249

Chapter Review 250

Programming Exercises 251

Branching Statements and Logical Operators 253
The if Statement 254

Logical Expressions 260

The cctype Library of Character Functions 270
The ?: Operator 273

The switch Statement 274

The break and continue Statements 280
Number-Reading Loops 283

Simple File Input/Output 287

Summary 298

Chapter Review 298

Programming Exercises 301

Functions: C++’s Programming Modules 305
Function Review 306

Function Arguments and Passing by Value 313
Functions and Arrays 320

Functions and Two-Dimensional Arrays 337
Functions and C-Style Strings 339

Functions and Structures 343

Functions and string Class Objects 353
Functions and array Objects 355

Recursion 357

Pointers to Functions 361

Summary 371

Chapter Review 372

Programming Exercises 374

Adventures in Functions 379
C++ Inline Functions 379
Reference Variables 383
Default Arguments 409
Function Overloading 412
Function Templates 419

Contents

Summary 442
Chapter Review 443
Programming Exercises 444

9 Memory Models and Namespaces 447
Separate Compilation 447
Storage Duration, Scope, and Linkage 453
Namespaces 482
Summary 497
Chapter Review 498
Programming Exercises 501

10 Objects and Classes 505
Procedural and Object-Oriented Programming 506
Abstraction and Classes 507
Class Constructors and Destructors 524
Knowing Your Objects: The this Pointer 539
An Array of Objects 546
Class Scope 549
Abstract Data Types 552
Summary 557
Chapter Review 558
Programming Exercises 559

11 Working with Classes 563
Operator Overloading 564
Time on Our Hands: Developing an Operator
Overloading Example 565
Introducing Friends 578
Overloaded Operators: Member Versus Nonmember
Functions 587
More Overloading: A Vector Class 588
Automatic Conversions and Type Casts for Classes 606
Summary 621
Chapter Review 623
Programming Exercises 623

12 Classes and Dynamic Memory Allocation 627
Dynamic Memory and Classes 628
The New, Improved String Class 647
Things to Remember When Using new
in Constructors 659
Observations About Returning Objects 662
Using Pointers to Objects 665
Reviewing Techniques 676
A Queue Simulation 678

13

14

15

16

Contents

Summary 699
Chapter Review 700
Programming Exercises 702

Class Inheritance 707

Beginning with a Simple Base Class 708
Inheritance: An Is-a Relationship 720
Polymorphic Public Inheritance 722
Static and Dynamic Binding 737

Access Control: protected 745
Abstract Base Classes 746

Inheritance and Dynamic Memory Allocation 757
Class Design Review 766

Summary 778

Chapter Review 779

Programming Exercises 780

Reusing Code in C++ 785
Classes with Object Members 786
Private Inheritance 797

Multiple Inheritance 808

Class Templates 830

Summary 866

Chapter Review 869

Programming Exercises 871

Friends, Exceptions, and More 877
Friends 877

Nested Classes 889

Exceptions 896

Runtime Type Identification 933

Type Cast Operators 943

Summary 947

Chapter Review 947

Programming Exercises 949

The string Class and the Standard

Template Library 951

The string Class 952

Smart Pointer Template Classes 968
The Standard Template Library 978
Generic Programming 992

Function Objects (a.k.a. Functors) 1026
Algorithms 1035

Other Libraries 1045

Xi

Xii Contents

17

18

Summary 1054
Chapter Review 1056
Programming Exercises 1057

Input, Output, and Files 1061

An Overview of C++ Input and Output 1062
Output with cout 1069

Input with cin 1093

File Input and Output 1114

Incore Formatting 1142

Summary 1145

Chapter Review 1146

Programming Exercises 1148

Visiting with the New C++ Standard 1153
C++11 Features Revisited 1153

Move Semantics and the Rvalue Reference 1164
New Class Features 1178

Lambda Functions 1184

Wrappers 1191

Variadic Templates 1197

More C++11 Features 1202

Language Change 1205

What Now? 1207

Summary 1208

Chapter Review 1209

Programming Exercises 1212

Appendixes

@ m m O O W »

Number Bases 1215

C++ Reserved Words 1221

The ASCII Character Set 1225
Operator Precedence 1231
Other Operators 1235

The string Template Class 1249

The Standard Template Library Methods and
Functions 1271

Selected Readings and Internet Resources 1323
Converting to ISO Standard C++ 1327

Answers to Chapter Reviews 1335

Index 1367

Acknowledgments

Acknowledgments for the Sixth Edition

I'd like to thank Mark Taber and Samantha Sinkhorn of Pearson for guiding and manag-
ing this project and David Horvath for providing technical review and editing.

Acknowledgments for the Fifth Edition

I'd like to thank Loretta Yates and Songlin Qiu of Sams Publishing for guiding and man-
aging this project. Thanks to my colleague Fred Schmitt for several useful suggestions.
Once again, I'd like to thank Ron Liechty of Metrowerks for his helpfulness.

Acknowledgments for the Fourth Edition

Several editors from Pearson and from Sams helped originate and maintain this project;
thanks to Linda Sharp, Karen Wachs, and Laurie McGuire. Thanks, too, to Michael
Maddox, Bill Craun, Chris Maunder, and Phillipe Bruno for providing technical review
and editing. And thanks again to Michael Maddox and Bill Craun for supplying the
material for the Real World Notes. Finally, I'd like to thank Ron Liechty of Metrowerks
and Greg Comeau of Comeau Computing for their aid with C++ compilers.

Acknowledgments for the Third Edition

I'd like to thank the editors from Macmillan and The Waite Group for the roles they
played in putting this book together: Tracy Dunkelberger, Susan Walton, and Andrea
Rosenberg. Thanks, too, to Russ Jacobs for his content and technical editing. From
Metrowerks, I'd like to thank Dave Mark, Alex Harper, and especially Ron Liechty, for
their help and cooperation.

Acknowledgments for the Second Edition

I'd like to thank Mitchell Waite and Scott Calamar for supporting a second edition and
Joel Fugazzotto and Joanne Miller for guiding the project to completion. Thanks to
Michael Marcotty of Metrowerks for dealing with my questions about their beta version
CodeWarrior compiler. I'd also like to thank the following instructors for taking the
time to give us feedback on the first edition: Jeff Buckwalter, Earl Brynner, Mike
Holland, Andy Yao, Larry Sanders, Shahin Momtazi, and Don Stephens. Finally, I wish to
thank Heidi Brumbaugh for her helpful content editing of new and revised material.

Acknowledgments for the First Edition

Many people have contributed to this book. In particular, I wish to thank Mitch Waite
for his work in developing, shaping, and reshaping this book, and for reviewing the man-
uscript. I appreciate Harry Henderson’s work in reviewing the last few chapters and in

testing programs with the Zortech C++ compiler. Thanks to David Gerrold for review-
ing the entire manuscript and for championing the needs of less-experienced readers.
Also thanks to Hank Shiffman for testing programs using Sun C++ and to Kent
Williams for testing programs with AT&T cfront and with G++.Thanks to Nan
Borreson of Borland International for her responsive and cheerful assistance with Turbo
C++ and Borland C++.Thank you, Ruth Myers and Christine Bush, for handling the
relentless paper flow involved with this kind of project. Finally, thanks to Scott Calamar
for keeping everything on track.

About the Author

Stephen Prata taught astronomy, physics, and computer science at the College of
Marin in Kentfield, California. He received his B.S. from the California Institute of
Technology and his Ph.D. from the University of California, Berkeley. He has authored
or coauthored more than a dozen books on programming topics including New C Primer
Plus, which received the Computer Press Association’s 1990 Best How-to Computer
Book Award, and C++ Primer Plus, nominated for the Computer Press Association’s Best
How-to Computer Book Award in 1991.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write directly to let us know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail we receive, we might not be able to reply to every message.

‘When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number.

Email: feedback@developers-library.info
Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

www.informit.com/register

Introduction

Learning C++ is an adventure of discovery, particularly because the language accom-
modates several programming paradigms, including object-oriented programming,
generic programming, and the traditional procedural programming. The fifth edition of
this book described the language as set forth in the ISO C++ standards, informally
known as C++99 and C++03, or, sometimes as C++99/03. (The 2003 version was
largely a technical correction to the 1999 standard and didn’t add any new features.)
Since then, C++ continues to evolve. As this book is written, the international C++
Standards Committee has just approved a new version of the standard. This standard had
the informal name of C++0x while in development, and now it will be known as
C++11. Most contemporary compilers support C++99/03 quite well, and most of the
examples in this book comply with that standard. But many features of the new standard
already have appeared in some implementations, and this edition of C++ Primer Plus
explores these new features.

C++ Primer Plus discusses the basic C language and presents C++ features, making
this book self-contained. It presents C++ fundamentals and illustrates them with short,
to-the-point programs that are easy to copy and experiment with.You learn about
input/output (I/0), how to make programs perform repetitive tasks and make choices,
the many ways to handle data, and how to use functions.You learn about the many
features C++ has added to C, including the following:

= Classes and objects

= Inheritance

= Polymorphism, virtual functions, and runtime type identification (RTTI)
= Function overloading

= Reference variables

= Generic, or type-independent, programming, as provided by templates and the
Standard Template Library (STL)

= The exception mechanism for handling error conditions

= Namespaces for managing names of functions, classes, and variables

Introduction

The Primer Approach

C++ Primer Plus brings several virtues to the task of presenting all this material. It builds
on the primer tradition begun by C Primer Plus nearly two decades ago and embraces its
successful philosophy:

= A primer should be an easy-to-use, friendly guide.

= A primer doesn’t assume that you are already familiar with all relevant program-
ming concepts.

= A primer emphasizes hands-on learning with brief, easily typed examples that
develop your understanding, a concept or two at a time.
= A primer clarifies concepts with illustrations.

= A primer provides questions and exercises to let you test your understanding, mak-
ing the book suitable for self-learning or for the classroom.

Following these principles, the book helps you understand this rich language and how
to use it. For example

= It provides conceptual guidance about when to use particular features, such as using
public inheritance to model what are known as is-a relationships.

= It illustrates common C++ programming idioms and techniques.

= It provides a variety of sidebars, including tips, cautions and notes.

The author and editors of this book do our best to keep the presentation to-the-point,
simple, and fun. Our goal is that by the end of the book, you’ll be able to write solid,
effective programs and enjoy yourself doing so.

Sample Code Used in This Book

This book provides an abundance of sample code, most of it in the form of complete
programs. Like the previous editions, this book practices generic C++ so that it is not
tied to any particular kind of computer, operating system, or compiler. Thus, the examples
were tested on a Windows 7 system, a Macintosh OS X system, and a Linux system.
Those programs using C++11 features require compilers supporting those features, but
the remaining programs should work with any C++99/03-compliant system.

The sample code for the complete programs described in this book is available on this
book’s website. See the registration link given on the back cover for more information.

How This Book Is Organized

This book is divided into 18 chapters and 10 appendixes, summarized here:

= Chapter 1: Getting Started with C++—Chapter 1 relates how Bjarne Stroustrup
created the C++ programming language by adding object-oriented programming

How This Book Is Organized

support to the C language.You’ll learn the distinctions between procedural lan-
guages, such as C, and object-oriented languages, such as C++.You’ll read about
the joint ANSI/ISO work to develop a C++ standard. This chapter discusses the
mechanics of creating a C++ program, outlining the approach for several current
C++ compilers. Finally, it describes the conventions used in this book.

Chapter 2: Setting Out to C++
creating simple C++ programs.You'll learn about the role of the main () function

Chapter 2 guides you through the process of

and about some of the kinds of statements that C++ programs use.You’'ll use the
predefined cout and cin objects for program output and input, and you’ll learn
about creating and using variables. Finally, you’ll be introduced to functions, C++’s
programming modules.

Chapter 3: Dealing with Data—C++ provides built-in types for storing two
kinds of data: integers (numbers with no fractional parts) and floating-point num-
bers (numbers with fractional parts). To meet the diverse requirements of program-
mers, C++ offers several types in each category. Chapter 3 discusses those types,
including creating variables and writing constants of various types.You’ll also learn
how C++ handles implicit and explicit conversions from one type to another.

Chapter 4: Compound Types—C++ lets you construct more elaborate types from
the basic built-in types. The most advanced form is the class, discussed in Chapters
9 through 13. Chapter 4 discusses other forms, including arrays, which hold several
values of a single type; structures, which hold several values of unlike types; and
pointers, which identify locations in memory.You’'ll also learn how to create and
store text strings and to handle text I/O by using C-style character arrays and the
C++ string class. Finally, you’ll learn some of the ways C++ handles memory
allocation, including using the new and delete operators for managing memory
explicitly.

Chapter 5: Loops and Relational Expressions—Programs often must perform
repetitive actions, and C++ provides three looping structures for that purpose: the
for loop, the while loop, and the do while loop. Such loops must know when
they should terminate, and the C++ relational operators enable you to create tests
to guide such loops. In Chapter 5 you learn how to create loops that read and
process input character-by-character. Finally, you’ll learn how to create two-dimen-
sional arrays and how to use nested loops to process them.

Chapter 6: Branching Statements and Logical Operators—Programs can behave
intelligently if they can tailor their behavior to circumstances. In Chapter 6 you’ll
learn how to control program flow by using the if, if else,and switch state-
ments and the conditional operator.You’ll learn how to use logical operators to
help express decision-making tests. Also, you'll meet the cctype library of functions
for evaluating character relations, such as testing whether a character is a digit or a
nonprinting character. Finally, you’ll get an introductory view of file I/O.

Introduction

= Chapter 7: Functions: C++’s Programming Modules—Functions are the basic
building blocks of C++ programming. Chapter 7 concentrates on features that
C++ functions share with C functions. In particular, you’ll review the general for-
mat of a function definition and examine how function prototypes increase the
reliability of programs. Also, you’ll investigate how to write functions to process
arrays, character strings, and structures. Next, you’ll learn about recursion, which is
when a function calls itself, and see how it can be used to implement a divide-and-
conquer strategy. Finally, you’ll meet pointers to functions, which enable you to use
a function argument to tell one function to use a second function.

= Chapter 8: Adventures in Functions—Chapter 8 explores the new features C++
adds to functions.You’ll learn about inline functions, which can speed program exe-
cution at the cost of additional program size.You’ll work with reference variables,
which provide an alternative way to pass information to functions. Default argu-
ments let a function automatically supply values for function arguments that you
omit from a function call. Function overloading lets you create functions having the
same name but taking different argument lists. All these features have frequent use
in class design. Also you’ll learn about function templates, which allow you to spec-
ify the design of a family of related functions.

= Chapter 9: Memory Models and Namespaces—Chapter 9 discusses putting
together multifile programs. It examines the choices in allocating memory, looking
at different methods of managing memory and at scope, linkage, and namespaces,
which determine what parts of a program know about a variable.

= Chapter 10: Objects and Classes—A class is a user-defined type, and an object
(such as a variable) is an instance of a class. Chapter 10 introduces you to object-
oriented programming and to class design. A class declaration describes the infor-
mation stored in a class object and also the operations (class methods) allowed for
class objects. Some parts of an object are visible to the outside world (the public
portion), and some are hidden (the private portion). Special class methods (con-
structors and destructors) come into play when objects are created and destroyed.
You will learn about all this and other class details in this chapter, and you’ll see
how classes can be used to implement ADTs, such as a stack.

= Chapter 11: Working with Classes—In Chapter 11 you’ll further your under-
standing of classes. First, you’ll learn about operator overloading, which lets you
define how operators such as + will work with class objects. You’ll learn about
friend functions, which can access class data that’s inaccessible to the world at large.
You’ll see how certain constructors and overloaded operator member functions can
be used to manage conversion to and from class types.

= Chapter 12: Classes and Dynamic Memory Allocation—Often it’s useful to
have a class member point to dynamically allocated memory. If you use new in a
class constructor to allocate dynamic memory, you incur the responsibilities of pro-
viding an appropriate destructor, of defining an explicit copy constructor, and of

How This Book Is Organized

defining an explicit assignment operator. Chapter 12 shows you how and discusses
the behavior of the member functions generated implicitly if you fail to provide
explicit definitions.You'll also expand your experience with classes by using point-
ers to objects and studying a queue simulation problem.

Chapter 13: Class Inheritance—One of the most powerful features of object-ori-
ented programming is inheritance, by which a derived class inherits the features of a
base class, enabling you to reuse the base class code. Chapter 13 discusses public
inheritance, which models is-a relationships, meaning that a derived object is a spe-
cial case of a base object. For example, a physicist is a special case of a scientist.
Some inheritance relationships are polymorphic, meaning you can write code using
a mixture of related classes for which the same method name may invoke behavior
that depends on the object type. Implementing this kind of behavior necessitates
using a new kind of member function called a virtual function. Sometimes using
abstract base classes is the best approach to inheritance relationships. This chapter
discusses these matters, pointing out when public inheritance is appropriate and
when it is not.

Chapter 14: Reusing Code in C++—Public inheritance is just one way to reuse
code. Chapter 14 looks at several other ways. Containment is when one class con-
tains members that are objects of another class. It can be used to model has-a rela-
tionships, in which one class has components of another class. For example, an
automobile has a motor.You also can use private and protected inheritance to
model such relationships. This chapter shows you how and points out the differ-
ences among the different approaches. Also, you’ll learn about class templates, which
let you define a class in terms of some unspecified generic type, and then use the
template to create specific classes in terms of specific types. For example, a stack
template enables you to create a stack of integers or a stack of strings. Finally, you’ll
learn about multiple public inheritance, whereby a class can derive from more than
one class.

Chapter 15: Friends, Exceptions, and More—Chapter 15 extends the discussion
of friends to include friend classes and friend member functions. Then it presents
several new developments in C++, beginning with exceptions, which provide a
mechanism for dealing with unusual program occurrences, such an inappropriate
function argument values and running out of memory. Then you’ll learn about
RTTI, a mechanism for identifying object types. Finally, you’ll learn about the safer
alternatives to unrestricted typecasting.

Chapter 16: The string Class and the Standard Template Library—Chapter 16
discusses some useful class libraries recently added to the language. The string class
is a convenient and powerful alternative to traditional C-style strings. The auto_ptr
class helps manage dynamically allocated memory. The STL provides several generic
containers, including template representations of arrays, queues, lists, sets, and maps.

[t also provides an efficient library of generic algorithms that can be used with STL

Introduction

containers and also with ordinary arrays. The valarray template class provides sup-
port for numeric arrays.

= Chapter 17: Input, Output, and Files—Chapter 17 reviews C++ /O and dis-
cusses how to format output.You’ll learn how to use class methods to determine
the state of an input or output stream and to see, for example, whether there has
been a type mismatch on input or whether the end-of-file has been detected. C++
uses inheritance to derive classes for managing file input and output.You'll learn
how to open files for input and output, how to append data to a file, how to use
binary files, and how to get random access to a file. Finally, you’ll learn how to
apply standard I/O methods to read from and write to strings.

= Chapter 18:Visiting with the New C++ Standard—Chapter 18 begins by
reviewing several C++11 features introduced in earlier chapters, including new
types, uniform initialization syntax, automatic type deduction, new smart pointers,
and scoped enumerations. The chapter then discusses the new rvalue reference type
and how it’s used to implement a new feature called move semantics. Next, the chap-
ter covers new class features, lambda expressions, and variadic templates. Finally, the
chapter outlines many new features not covered in earlier chapters of the book.

= Appendix A: Number Bases—Appendix A discusses octal, hexadecimal, and
binary numbers.

= Appendix B: C++ Reserved Words—Appendix B lists C++ keywords.

= Appendix C:The ASCII Character Set—Appendix C lists the ASCII character
set, along with decimal, octal, hexadecimal, and binary representations.

= Appendix D: Operator Precedence—Appendix D lists the C++ operators in
order of decreasing precedence.

= Appendix E: Other Operators—Appendix E summarizes the C++ operators,
such as the bitwise operators, not covered in the main body of the text.

= Appendix F:The string Template Class—Appendix F summarizes string

class methods and functions.

= Appendix G:The Standard Template Library Methods and Functions—
Appendix G summarizes the STL container methods and the general STL
algorithm functions.

= Appendix H: Selected Readings and Internet Resources—Appendix H lists
some books that can further your understanding of C++.

= Appendix I: Converting to ISO Standard C++—Appendix I provides guidelines
for moving from C and older C++ implementations to ANSI/ISO C++.

= Appendix J: Answers to Chapter Review—Appendix | contains the answers to
the review questions posed at the end of each chapter.

Note to Instructors

Note to Instructors

One of the goals of this edition of C++ Primer Plus is to provide a book that can be used
as either a teach-yourself book or as a textbook. Here are some of the features that sup-
port using C++ Primer Plus, Sixth Edition, as a textbook:

= This book describes generic C++,so it isn’t dependent on a particular implemen-
tation.

= The contents track the ISO/ANSI C++ standards committee’s work and include
discussions of templates, the STL, the string class, exceptions, RTTI, and name-
spaces.

» It doesn’t assume prior knowledge of C, so it can be used without a C prerequisite.
(Some programming background is desirable, however.)

» Topics are arranged so that the early chapters can be covered rapidly as review
chapters for courses that do have a C prerequisite.

» Chapters include review questions and programming exercises. Appendix J provides
the answers to the review questions.

» The book introduces several topics that are appropriate for computer science
courses, including abstract data types (ADTS), stacks, queues, simple lists, simula-
tions, generic programming, and using recursion to implement a divide-and-con-
quer strategy.

= Most chapters are short enough to cover in a week or less.

= The book discusses when to use certain features as well as how to use them. For
example, it links public inheritance to is-a relationships and composition and pri-
vate inheritance to has-a relationships, and it discusses when to use virtual functions
and when not to.

Conventions Used in This Book

This book uses several typographic conventions to distinguish among various kinds of text:

= Code lines, commands, statements, variables, filenames, and program output appear
in a computer typeface:

#include <iostream>

int main()
using namespace std;
cout << "What’s up, Doc!\n";
return 0;

Introduction

= Program input that you should type appears in bold computer typeface:

Please enter your name:
Plato

= Placeholders in syntax descriptions appear in an italic computer typeface.You
should replace a placeholder with the actual filename, parameter, or whatever ele-
ment it represents.

= [talic type is used for new terms.

Sidebar

A sidebar provides a deeper discussion or additional background to help illuminate a topic.

Tip
Tips present short, helpful guides to particular programming situations.

Caution
A caution alerts you to potential pitfalls.

Note

The notes provide a catch-all category for comments that don’t fall into one of the other
categories.

Systems Used to Develop This Book’s
Programming Examples

For the record, the C++11 examples in this book were developed using Microsoft Visual
C++ 2010 and Cygwin with Gnu g++ 4.5.0, both running under 64-bit Windows 7.
The remaining examples were tested with these systems, as well as on an iMac using g++
4.2.1 under OS X 10.6.8 and on an Ubuntu Linux system using g++ 4.4.1. Most of the
pre-C++11 examples were originally developed using Microsoft Visual C++ 2003 and
Metrowerks CodeWarrior Development Studio 9 running under Windows XP Profes-
sional and checked using the Borland C++ 5.5 command-line compiler and GNU gpp
3.3.3 on the same system, using Comeau 4.3.3 and GNU g++ 3.3.1 under SuSE 9.0
Linux, and using Metrowerks Development Studio 9 on a Macintosh G4 under OS 10.3.
C++ ofters a lot to the programmer; learn and enjoy!

1

Getting Started with C++

In this chapter you’ll learn about the following:

= The history and philosophy of C and of C++

= Procedural versus object-oriented programming

= How C++ adds object-oriented concepts to the C language

= How C++ adds generic programming concepts to the C language
= Programming language standards

= The mechanics of creating a program

Welcome to C++!This exciting language, which blends the C language with support
for object-oriented programming and for generic programming, became one of the most
important programming languages of the 1990s and continues strongly in the 2000s. Its C
ancestry brings to C++ the tradition of an efficient, compact, fast, and portable language.
Its object-oriented heritage brings C++ a fresh programming methodology, designed to
cope with the escalating complexity of modern programming tasks. Its template features
bring yet another new programming methodology: generic programming. This triple her-
itage is both a blessing and a bane. It makes the language very powerful, but it also means
there’s a lot to learn.

This chapter explores C++’s background further and then goes over some of the
ground rules for creating C++ programs. The rest of the book teaches you to use the
C++ language, going from the modest basics of the language to the glory of object-ori-
ented programming (OOP) and its supporting cast of new jargon—objects, classes, encap-
sulation, data hiding, polymorphism, and inheritance—and then on to its support of
generic programming. (Of course, as you learn C++, these terms will be transformed
from buzzwords to the necessary vocabulary of cultivated discourse.)

10

Chapter 1 Getting Started with C++

Learning C++: What Lies Before You

C++ joins three separate programming categories: the procedural language, represented
by C; the object-oriented language, represented by the class enhancements C++ adds to
C; and generic programming, supported by C++ templates. This chapter looks into those
traditions. But first, let’s consider what this heritage implies about learning C++. One
reason to use C++ is to avail yourself of its object-oriented features. To do so, you need a
sound background in standard C, for that language provides the basic types, operators,
control structures, and syntax rules. So if you already know C, you’re poised to learn
C++. But it’s not just a matter of learning a few more keywords and constructs. Going
from C to C++ involves perhaps more work than learning C in the first place. Also if you
know C, you must unlearn some programming habits as you make the transition to C++.
If you don’t know C, you have to master the C components, the OOP components, and
the generic components to learn C++, but at least you may not have to unlearn pro-
gramming habits. If you are beginning to think that learning C++ may involve some
mind-stretching effort on your part, you're right. This book will guide you through the
process in a clear, helpful manner, one step at a time, so the mind-stretching will be suthi-
ciently gentle to leave your brain resilient.

C++ Primer Plus approaches C++ by teaching both its C basis and its new compo-
nents, so it assumes that you have no prior knowledge of C.You'll start by learning the
features C++ shares with C. Even if you know C, you may find this part of the book a
good review. Also it points out concepts that will become important later, and it indicates
where C++ differs from C. After you have a good grounding in the basics of C, you’ll
learn about the C++ superstructure. At that point, you’ll learn about objects and classes
and how C++ implements them. And you will learn about templates.

This book is not intended to be a complete C++ reference; it doesn’t explore every
nook and cranny of the language. But you will learn most of the major features of the
language, including templates, exceptions, and namespaces.

Now let’s take a brief look at some of C++’ background.

The Origins of C++: A Little History

Computer technology has evolved at an amazing rate over the past few decades. Today a
notebook computer can compute faster and store more information than the mainframe
computers of the 1960s. (Quite a few programmers can recall bearing offerings of decks
of punched cards to be submitted to a mighty, room-filling computer system with a
majestic 100KB of memory—far less memory than even a smartphone uses today.) Com-
puter languages have evolved, too. The changes may not be as dramatic, but they are
important. Bigger, more powerful computers spawn bigger, more complex programs,
which, in turn, raise new problems in program management and maintenance.

In the 1970s, languages such as C and Pascal helped usher in an era of structured pro-
gramming, a philosophy that brought some order and discipline to a field badly in need
of these qualities. Besides providing the tools for structured programming, C also

The Origins of C++: A Little History

produced compact, fast-running programs, along with the ability to address hardware
matters, such as managing communication ports and disk drives. These gifts helped make
C the dominant programming language in the 1980s. Meanwhile, the 1980s witnessed
the growth of a new programming paradigm: object-oriented programming, or OOP, as
embodied in languages such as SmallTalk and C++. Let’s examine these C and OOP a bit
more closely.

The C Language

In the early 1970s, Dennis Ritchie of Bell Laboratories was working on a project to
develop the Unix operating system. (An operating system is a set of programs that manages
a computer’s resources and handles its interactions with users. For example, it’s the operat-
ing system that puts the system prompt onscreen for a terminal-style interface that man-
ages the windows and mice for graphical interfaces and that runs programs for you.) For
this work Ritchie needed a language that was concise, that produced compact, fast pro-
grams, and that could control hardware efficiently.

Traditionally, programmers met these needs by using assembly language, which is
closely tied to a computer’s internal machine language. However, assembly language is a
low-level language—that is, it works directly with the hardware (for instance, accessing
CPU registers and memory locations directly). Thus, assembly language is specific to a
particular computer processor. So if you want to move an assembly program to a difterent
kind of computer, you may have to completely rewrite the program, using a different
assembly language. It was a bit as if each time you bought a new car, you found that the
designers decided to change where the controls went and what they did, forcing you to
relearn how to drive.

But Unix was intended to work on a variety of computer types (or platforms). That
suggested using a high-level language. A high-level language is oriented toward problem
solving instead of toward specific hardware. Special programs called compilers translate a
high-level language to the internal language of a particular computer. Thus, you can use
the same high-level language program on different platforms by using a separate compiler
for each platform. Ritchie wanted a language that combined low-level efficiency and
hardware access with high-level generality and portability. So building from older
languages, he created C.

C Programming Philosophy

Because C++ grafts a new programming philosophy onto C, we should first take a look
at the older philosophy that C follows. In general, computer languages deal with two
concepts—data and algorithms. The data constitutes the information a program uses and
processes. The algorithms are the methods the program uses (see Figure 1.1). Like most
mainstream languages when C was created, C is a procedural language. That means it
emphasizes the algorithm side of programming. Conceptually, procedural programming

11

Chapter 1 Getting Started with C++

consists of figuring out the actions a computer should take and then using the program-
ming language to implement those actions. A program prescribes a set of procedures for
the computer to follow to produce a particular outcome, much as a recipe prescribes a set
of procedures for a cook to follow to produce a cake.

DATA ALGORITHMS
1/2 cup butter cream butter
1 cup sugar + gradually, add sugar
2 eggs break eggs

PROGRAM

Figure 1.1 Data + algorithms = program.

Earlier procedural languages, such as FORTRAN and BASIC, ran into organizational
problems as programs grew larger. For example, programs often use branching statements,
which route execution to one or another set of instructions, depending on the result of
some sort of test. Many older programs had such tangled routing (called “spaghetti pro-
gramming”) that it was virtually impossible to understand a program by reading it, and
modifying such a program was an invitation to disaster. In response, computer scientists
developed a more disciplined style of programming called structured programming. C
includes features to facilitate this approach. For example, structured programming limits
branching (choosing which instruction to do next) to a small set of well-behaved con-
structions. C incorporates these constructions (the for loop, the while loop, the do
while loop, and the if else statement) into its vocabulary.

Top-down design was another of the new principles. With C, the idea is to break a large
program into smaller, more manageable tasks. If one of these tasks is still too broad, you
divide it into yet smaller tasks.You continue with this process until the program is com-
partmentalized into small, easily programmed modules. (Organize your study. Aargh! Well,
organize your desk, your table top, your filing cabinet, and your bookshelves. Aargh! Well,
start with the desk and organize each drawer, starting with the middle one. Hmmm, per-
haps I can manage that task.) C’s design facilitates this approach, encouraging you to

The Origins of C++: A Little History

develop program units called functions to represent individual task modules. As you may
have noticed, the structured programming techniques reflect a procedural mind-set,
thinking of a program in terms of the actions it performs.

The C++ Shift: Object-Oriented Programming

Although the principles of structured programming improved the clarity, reliability, and
ease of maintenance of programs, large-scale programming still remains a challenge. OOP
brings a new approach to that challenge. Unlike procedural programming, which empha-
sizes algorithms, OOP emphasizes the data. Rather than try to fit a problem to the proce-
dural approach of a language, OOP attempts to fit the language to the problem.The idea
is to design data forms that correspond to the essential features of a problem.

In C++, a dlass is a specification describing such a new data form, and an object is a par-
ticular data structure constructed according to that plan. For example, a class could
describe the general properties of a corporation executive (name, title, salary, unusual abil-
ities, for example), while an object would represent a specific executive (Guilford Sheep-
blat, vice president, $925,000, knows how to restore the Windows registry). In general, a
class defines what data is used to represent an object and the operations that can be per-
formed on that data. For example, suppose you were developing a computer drawing pro-
gram capable of drawing a rectangle.You could define a class to describe a rectangle. The
data part of the specification could include such things as the location of the corners, the
height and width, the color and style of the boundary line, and the color and pattern used
to fill the rectangle. The operations part of the specification could include methods for
moving the rectangle, resizing it, rotating it, changing colors and patterns, and copying the
rectangle to another location. If you then used your program to draw a rectangle, it would
create an object according to the class specification. That object would hold all the data
values describing the rectangle, and you could use the class methods to modify that rec-
tangle. If you drew two rectangles, the program would create two objects, one for each
rectangle.

The OOP approach to program design is to first design classes that accurately repre-
sent those things with which the program deals. For example, a drawing program might
define classes to represent rectangles, lines, circles, brushes, pens, and the like. The class
definitions, recall, include a description of permissible operations for each class, such as
moving a circle or rotating a line. Then you would proceed to design a program, using
objects of those classes. The process of going from a lower level of organization, such as
classes, to a higher level, such as program design, is called botfom-up programming.

There’s more to OOP than the binding of data and methods into a class definition. For
example, OOP facilitates creating reusable code, and that can eventually save a lot of
work. Information hiding safeguards data from improper access. Polymorphism lets you
create multiple definitions for operators and functions, with the programming context
determining which definition is used. Inheritance lets you derive new classes from old
ones. As you can see, OOP introduces many new ideas and involves a different approach
to programming than does procedural programming. Instead of concentrating on tasks,

13

14

Chapter 1 Getting Started with C++

you concentrate on representing concepts. Instead of taking a top-down programming
approach, you sometimes take a bottom-up approach. This book will guide you through
all these points, with plenty of easily grasped examples.

Designing a useful, reliable class can be a difficult task. Fortunately, OOP languages
make it simple to incorporate existing classes into your own programming.Vendors pro-
vide a variety of useful class libraries, including libraries of classes designed to simplify
creating programs for environments such as Windows or the Macintosh. One of the real
benefits of C++ is that it lets you easily reuse and adapt existing, well-tested code.

C++ and Generic Programming

Generic programming is yet another programming paradigm supported by C++. It shares
with OOP the aim of making it simpler to reuse code and the technique of abstracting
general concepts. But whereas OOP emphasizes the data aspect of programming, generic
programming emphasizes independence from a particular data type. And its focus is dif-
ferent. OOP is a tool for managing large projects, whereas generic programming provides
tools for performing common tasks, such as sorting data or merging lists. The term generic
refers to code that is type independent. C++ data representations come in many types—
integers, numbers with fractional parts, characters, strings of characters, and user-defined
compound structures of several types. If, for example, you wanted to sort data of these
various types, you would normally have to create a separate sorting function for each
type. Generic programming involves extending the language so that you can write a
function for a generic (that is, an unspecified) type once and use it for a variety of actual
types. C++ templates provide a mechanism for doing that.

The Genesis of C++

Like C, C++ began its life at Bell Labs, where Bjarne Stroustrup developed the language
in the early 1980s. In Stroustrup’s own words, “C++ was designed primarily so that my
friends and I would not have to program in assembler, C, or various modern high-level
languages. Its main purpose was to make writing good programs easier and more pleasant
for the individual programmer” (Bjarne Stroustrup, The C++ Programming Language, Third
Edition. Reading, MA: Addison-Wesley, 1997).

Bjarne Stroustrup’s Home Page

Bjarne Stroustrup designed and implemented the C++ programming language and is the
author of the definitive reference manuals The C++ Programming Language and The Design
and Evolution of C++. His personal website at AT&T Labs Research should be the first C++
bookmark, or favorite, you create:

www.research.att.com/~bs
This site includes an interesting historical perspective of the hows and whys of the C++ lan-
guage, Stroustrup’s biographical material, and C++ FAQs. Surprisingly, Stroustrup’s most fre-

quently asked question may be how to pronounce Bjarne Stroustrup. Check out the FAQ on
Stroustrup’s website and download the .wAV file to hear for yourself!

www.research.att.com/~bs

Portability and Standards 15

Stroustrup was more concerned with making C++ useful than with enforcing particu-
lar programming philosophies or styles. Real programming needs are more important than
theoretical purity in determining C++ language features. Stroustrup based C++ on C
because of C’s brevity, its suitability to system programming, its widespread availability, and
its close ties to the Unix operating system. C++’s OOP aspect was inspired by a computer
simulation language called Simula67. Stroustrup added OOP features and generic pro-
gramming support to C without significantly changing the C component. Thus C++ is a
superset of C, meaning that any valid C program is a valid C++ program, too. There are
some minor discrepancies but nothing crucial. C++ programs can use existing C software
libraries. Libraries are collections of programming modules that you can call up from a pro-
gram. They provide proven solutions to many common programming problems, thus sav-
ing you much time and effort. This has helped the spread of C++.

The name C++ comes from the C increment operator ++, which adds one to the value
of a variable. Therefore, the name C++ correctly suggests an augmented version of C.

A computer program translates a real-life problem into a series of actions to be taken
by a computer. The OOP aspect of C++ gives the language the ability to relate to con-
cepts involved in the problem, and the C part of C++ gives the language the ability to
get close to the hardware (see Figure 1.2).This combination of abilities has enabled the
spread of C++. It may also involve a mental shift of gears as you turn from one aspect of
a program to another. (Indeed, some OOP purists regard adding OOP features to C as
being akin to adding wings to a pig, albeit a lean, efficient pig.) Also because C++ grafts
OOP onto C, you can ignore C++% object-oriented features. But you’ll miss a lot if
that’s all you do.

Only after C++ achieved some success did Stroustrup add templates, enabling generic
programming. And only after the template feature had been used and enhanced did it
become apparent that templates were perhaps as significant an addition as OOP—or even
more significant, some would argue. The fact that C++ incorporates both OOP and
generic programming, as well as the more traditional procedural approach, demonstrates
that C++ emphasizes the utilitarian over the ideological approach, and that is one of the
reasons for the language’s success.

Portability and Standards

Say you’ve written a handy C++ program for the elderly Pentium PC computer running
Windows 2000 at work, but management decides to replace the machine with a new
computer using a different operating system, say Mac OS X or Linux, perhaps one with a
different processor design, such as a SPARC processor. Can you run your program on the
new platform? Of course you’ll have to recompile the program using a C++ compiler
designed for the new platform. But will you have to make any changes to the code you
wrote? If you can recompile the program without making changes and it runs without a
hitch, we say the program is portable.

16 Chapter 1 Getting Started with C++

OOP heritage provides
a high level of abstraction.

north_america.show();

BO

C heritage provides
low-level hardware access.

set byte at
address

01000 to 0

Figure 1.2 C++ duality.

There are a couple obstacles to portability, the first of which is hardware. A program
that is hardware specific is not likely to be portable. One that takes direct control of an
IBM PC video board, for example, speaks gibberish as far as, say, a Sun is concerned. (You
can minimize portability problems by localizing the hardware-dependent parts in function
modules; then you just have to rewrite those specific modules.) We avoid that sort of
programming in this book.

The second obstacle to portability is language divergence. Certainly, that can be a prob-
lem with spoken languages. A Yorkshireman’s description of the day’s events may not be
portable to Brooklyn, even though English is said to be spoken in both areas. Computer
languages, too, can develop dialects. Although most implementers would like to make
their versions of C++ compatible with others, it’s difficult to do so without a published
standard describing exactly how the language works. Therefore, the American National
Standards Institute (ANSI) created a committee in 1990 (ANSI X3J16) to develop a stan-
dard for C++. (ANSI had already developed a standard for C.) The International Organi-
zation for Standardization (ISO) soon joined the process with its own committee
(ISO-WG-21), creating a joint ANSI/ISO eftort to develop the standard for C++.

Portability and Standards 17

Several years of work eventually led to the International Standard (ISO/IEC
14882:1998), which was adopted in 1998 by the ISO, the International Electrotechnical
Commission (IEC), and ANSI. This standard, often called C++98, not only refined the
description of existing C++ features but also extended the language with exceptions, run-
time type identification (RTTI), templates, and the Standard Template Library (STL). The
year 2003 brought the publication of the second edition of the C++ standard (ISO/IEC
14882:2003); the new edition is a technical revision, meaning that it tidies up the first edi-
tion—fixing typos, reducing ambiguities, and the like—but doesn’t change the language
features. This edition often is called C++03. Because C++03 didn’t change language fea-
tures, we’ll follow a common usage and use C++98 to refer to C++98/C++03.

C++ continues to evolve, and the ISO committee approved a new standard August
2011 titled ISO/IEC 14882:2011 and informally dubbed C++11. Like C++98, C++11
adds many features to the language. In addition, it has the goals of removing inconsisten-
cies and of making C++ easier to learn and use. This standard had been dubbed C++0x,
with the original expectation that x would be 7 or 8, but standards work is a slow, exhaus-
tive, and exhausting process. Fortunately, it was soon realized that Ox could be a hexadeci-
mal integer (see Appendix A, “Number Bases”), which meant the committee had until
2015 to finish the work. So by that measure, they have finished ahead of schedule.

The ISO C++ Standard additionally draws on the ANSI C Standard because C++ is
supposed to be, as far as possible, a superset of C.That means that any valid C program
ideally should also be a valid C++ program.There are a few differences between ANSI C
and the corresponding rules for C++, but they are minor. Indeed, ANSI C incorporates
some features first introduced in C++, such as function prototyping and the const type
qualifier.

Prior to the emergence of ANSI C, the C community followed a de facto standard
based on the book The C Programming Language, by Kernighan and Ritchie (Addison-Wesley
Publishing Company, Reading, MA, 1978). This standard was often termed K&R C; with
the emergence of ANSI C, the simpler K&R C is now sometimes called classic C.

The ANSI C Standard not only defines the C language, it also defines a standard C
library that ANSI C implementations must support. C++ also uses that library; this book
refers to it as the standard C library or the standard library. In addition, the ISO C++ stan-
dard provides a standard library of C++ classes.

The C Standard was last revised as C99, which was adopted by the ISO in 1999 and
ANSI in 2000.This standard adds some features to C, such as a new integer type, that
some C++ compilers support.

Language Growth

Originally, the de facto standard for C++ was a 65-page reference manual included in the
328-page The C++ Programming Language, by Stroustrup (Addison-Wesley, 1986).

The next major published de facto standard was The Annotated C++ Reference Manual,
by Ellis and Stroustrup (Addison-Wesley, 1990). This is a 453-page work; it includes sub-
stantial commentary in addition to reference material.

18

Chapter 1 Getting Started with C++

The C++98 standard, with the addition of many features, reached nearly 800 pages,
even with only minimal commentary.

The C++11 standard is over 1,350 pages long, so it augments the old standard sub-
stantially .

This Book and C++ Standards

Contemporary compilers provide good support for C++98. Some compilers at the time
of this writing also support some C++11 features, and we can expect the level of support
to increase quickly now that the new standard is adopted. This book reflects the current
situation, covering C++98 pretty thoroughly and introducing several C++11 features.
Some of these features are integrated with the coverage of related C++498 topics. Chapter
18, “Visiting with the New C++ Standard,” concentrates on the new features, summariz-
ing the ones mentioned earlier in the book and presenting additional features.

With the incomplete support available at the time of this writing, it would be very dif-
ficult to cover adequately all the new C++11 features. But even when the new standard is
completely supported, it’s clear that comprehensive coverage would be beyond the scope
of any reasonably sized single volume book.This book takes the approach of concentrat-
ing on features that are already available on some compilers and briefly summarizing many
of the other features.

Before getting to the C++ language proper, let’s cover some of the groundwork related
to creating programs.

The Mechanics of Creating a Program

Suppose you’ve written a C++ program. How do you get it running? The exact steps
depend on your computer environment and the particular C++ compiler you use, but
they should resemble the following steps (see Figure 1.3):

1. Use a text editor of some sort to write the program and save it in a file. This file
constitutes the source code for your program.

2. Compile the source code.This means running a program that translates the source
code to the internal language, called machine language, used by the host computer.
The file containing the translated program is the object code for your program.

3. Link the object code with additional code. For example, C++ programs normally
use libraries. A C++ library contains object code for a collection of computer rou-
tines, called functions, to perform tasks such as displaying information onscreen or
calculating the square root of a number. Linking combines your object code with
object code for the functions you use and with some standard startup code to pro-
duce a runtime version of your program.The file containing this final product is
called the executable code.

You will encounter the term source code throughout this book, so be sure to file it away
in your personal random-access memory.

The Mechanics of Creating a Program

source code

startup code

library code L

executable code

Figure 1.3 Programming steps.

Most of the programs in this book are generic and should run in any system that sup-
ports C++98. However, some, particularly those in Chapter 18, do require some C++11
support. At the time of this writing, some compilers require additional flags to activate
their partial C++11 support. For instance, g++, beginning with version 4.3, currently uses
the —std=c++0x flag when compiling a source code file:

g++ -std=c++0x use_auto.cpp

The steps for putting together a program may vary. Let’s look a little further at these steps.

Creating the Source Code File

The rest of the book deals with what goes into a source file; this section discusses the
mechanics of creating one. Some C++ implementations, such as Microsoft Visual C++,
Embarcadero C++ Builder, Apple Xcode, Open Watcom C++, Digital Mars C++, and
Freescale CodeWarrior, provide integrated development environments (IDEs) that let you man-
age all steps of program development, including editing, from one master program. Other
implementations, such as GNU C++ on Unix and Linux, IBM XL C/C++ on AIX, and
the free versions of the Borland 5.5 (distributed by Embarcadero) and Digital Mars com-
pilers, just handle the compilation and linking stages and expect you to type commands
on the system command line. In such cases, you can use any available text editor to create
and modify source code. On a Unix system, for example, you can use vi or ed or ex or
emacs. On a Windows system running in the Command Prompt mode you can use edlin

19

20

Chapter 1 Getting Started with C++

or edit or any of several available program editors.You can even use a word processor,
provided that you save the file as a standard ASCII text file instead of in a special word
processor format. Alternatively, there may be IDE options for use with these command-
line compilers.

In naming a source file, you must use the proper suffix to identify the file as a C++
file. This not only tells you that the file is C++ source code, it tells the compiler that, too.
(If a Unix compiler complains to you about a “bad magic number,” that’s just its endear-
ingly obscure way of saying that you used the wrong suffix.) The suffix consists of a period
followed by a character or group of characters called the extension (see Figure 1.4).

spiffy.cpp
——|'

| a period |

base name for file file name extension

Figure 1.4 The parts of a source code filename.

The extension you use depends on the C++ implementation. Table 1.1 shows some
common choices. For example, spiffy.c is a valid Unix C++ source code filename.
Note that Unix is case sensitive, meaning you should use an uppercase C character. Actu-
ally, a lowercase ¢ extension also works, but standard C uses that extension. So to avoid
confusion on Unix systems, you should use ¢ with C programs and ¢ with C++ pro-
grams. If you don’t mind typing an extra character or two, you can also use the cc and cxx
extensions with some Unix systems. DOS, being a bit simple-minded compared to Unix,
doesn’t distinguish between uppercase and lowercase, so DOS implementations use addi-
tional letters, as shown in Table 1.1, to distinguish between C and C++ programs.

Table 1.1 Source Code Extensions

C++ Implementation Source Code Extension(s)
Unix c, cc, xx, C

GNU C++ C, cc, CXX, CPP, C++
Digital Mars cpp, CXX

Borland C++ cpp

Watcom cpp

Microsoft Visual C++ Ccpp, CXX, CC

Freestyle CodeWarrior cpp, Cp, CC, CXX, C++

The Mechanics of Creating a Program

Compilation and Linking

Originally, Stroustrup implemented C++ with a C++-to-C compiler program instead of
developing a direct C++-to-object code compiler. This program, called cfront (for C
front end), translated C++ source code to C source code, which could then be compiled
by a standard C compiler. This approach simplified introducing C++ to the C commu-
nity. Other implementations have used this approach to bring C++ to other platforms. As
C++ has developed and grown in popularity, more and more implementers have turned
to creating C++ compilers that generate object code directly from C++ source code. This
direct approach speeds up the compilation process and emphasizes that C++ is a separate,
if similar, language.

The mechanics of compiling depend on the implementation, and the following sec-
tions outline a few common forms. These sections outline the basic steps, but they are no
substitute for consulting the documentation for your system.

Unix Compiling and Linking

Originally, the Unix cc command invoked cfront. However, cfront didn’t keep pace
with the evolution of C++, and its last release was in 1993.These days a Unix computer
instead might have no compiler, a proprietary compiler, or a third-party compiler, perhaps
commercial, perhaps freeware, such as the GNU g++ compiler. In many of these other
cases (but not in the no-compiler case!), the cc command still works, with the actual
compiler being invoked differing from system to system. For simplicity, we’ll assume that
cc is available, but realize that you might have to substitute a different command for cc in
the following discussion.

You use the cc command to compile your program.The name is in uppercase letters to
distinguish it from the standard Unix C compiler cc.The cc compiler is a command-line
compiler, meaning you type compilation commands on the Unix command line.

For example, to compile the C++ source code file spiffy.c, you would type this
command at the Unix prompt:

CC spiffy.C

If, through skill, dedication, or luck, your program has no errors, the compiler generates
an object code file with an o extension. In this case, the compiler produces a file named
spiffy.o.

Next, the compiler automatically passes the object code file to the system linker, a pro-
gram that combines your code with library code to produce the executable file. By
default, the executable file is called a.out. If you used just one source file, the linker also
deletes the spiffy.o file because it’s no longer needed. To run the program, you just type
the name of the executable file:

a.out
Note that if you compile a new program, the new a.out executable file replaces the

previous a.out. (That’s because executable files take a lot of space, so overwriting old exe-
cutable files helps reduce storage demands.) But if you develop an executable program

21

22

Chapter 1 Getting Started with C++

you want to keep, you just use the Unix mv command to change the name of the exe-
cutable file.

In C++,as in C, you can spread a program over more than one file. (Many of the pro-
grams in this book in Chapters 8 through 16 do this.) In such a case, you can compile a
program by listing all the files on the command line, like this:

CC my.C precious.C
If there are multiple source code files, the compiler does not delete the object code

files. That way, if you just change the my . c file, you can recompile the program with this
command:

CC my.C precious.o
This recompiles the my . ¢ file and links it with the previously compiled precious. o file.

You might have to identify some libraries explicitly. For example, to access functions
defined in the math library, you may have to add the -1m flag to the command line:

CC usingmath.C -1m

Linux Compiling and Linking

Linux systems most commonly use g++, the GNU C++ compiler from the Free Software
Foundation. The compiler is included in most Linux distributions, but it may not always
be installed. The g++ compiler works much like the standard Unix compiler. For example,
the following produces an executable file call a.out:

g++ spiffy.cxx
Some versions might require that you link in the C++ library:
g++ spiffy.cxx -1lg++
To compile multiple source files, you just list them all in the command line:
g++ my.cxx precious.cxx
This produces an executable file called a.out and two object code files, my .o and

precious.o. If you subsequently modify just one of the source code files, say my . cxx, you
can recompile by using my . cxx and the precious.o:

g++ mMy.Ccxx precious.o

The GNU compiler is available for many platforms, including the command-line
mode for Windows-based PCs as well as for Unix systems on a variety of platforms.

Command-Line Compilers for Windows Command Prompt Mode

An inexpensive route for compiling C++ programs on a Windows PC is to download a
free command-line compiler that runs in Windows Command Prompt mode, which
opens an MS-DOS-like window. Free Windows downloads that include the GNU C++
compiler are Cygwin and MinGW; they use g++ as the compiler name.

The Mechanics of Creating a Program

To use the g++ compiler, you first open a command prompt window. Cygwin and
MinGW do this for you automatically when you start those programs.To compile a
source code file named great . cpp, you type the following command at the prompt:

g++ great.cpp

If the program compiles successfully, the resultant executable file is named a. exe.

Windows Compilers

Windows products are too abundant and too often revised to make it reasonable to
describe them all individually. At the present the most popular is Microsoft Visual C++
2010, which is available in the free Microsoft Visual C++ 2010 Express edition. The
Wikipedia link (http://en.wikipedia.org/wiki/List_of_compilers) provides a comprehen-
sive list of compilers for many platforms, including Windows. Despite different designs and
goals, most Windows-based C++ compilers share some common features.

Typically, you must create a project for a program and add to the project the file or files
constituting the program. Each vendor supplies an IDE with menu options and, possibly,
automated assistance, in creating a project. One very important matter you have to estab-
lish is the kind of program you'’re creating. Typically, the compiler offers many choices,
such as a Windows application, an MFC Windows application, a dynamic link library, an
ActiveX control, a DOS or character-mode executable, a static library, or a console appli-
cation. Some of these may be available in both 64-bit and 32-bit versions.

Because the programs in this book are generic, you should avoid choices that require
platform-specific code, such as Windows applications. Instead, you want to run in a char-
acter-based mode. The choice depends on the compiler. In general, you should look to see
if there is an option labeled Console, character-mode, or DOS executable and try that. For
instance, in Microsoft Visual C++ 2010, select the Win32 Console Application option,
click Application Settings, and select the Empty Project option. In C++Builder XE, select
Console Application under C++Builder Projects.

After you have the project set up, you have to compile and link your program.The IDE
typically gives you several choices, such as Compile, Build, Make, Build All, Link, Execute,
Run, and Debug (but not necessarily all these choices in the same IDE!):

= Compile typically means compile the code in the file that is currently open.

» Build or Make typically means compile the code for all the source code files in the
project. This is often an incremental process. That is, if the project has three files, and
you change just one, and then just that one is recompiled.

= Build All typically means compile all the source code files from scratch.

= As described earlier, Link means combine the compiled source code with the neces-
sary library code.

= Run or Execute means run the program.Typically, if you have not yet done the
earlier steps, Run does them before trying to run a program.

= Debug means run the program with the option of going through step-by-step.

23

http://en.wikipedia.org/wiki/List_of_compilers

24 Chapter 1 Getting Started with C++

= A compiler may offer the option of Debug and Release versions. The former contains
extra code that increases the program size, slows program execution, but enables
detailed debugging features.

A compiler generates an error message when you violate a language rule and identifies
the line that has the problem. Unfortunately, when you are new to a language, you may
find it difficult to understand the message. Sometimes the actual error may occur before
the identified line, and sometimes a single error generates a chain of error messages.

Tip
When fixing errors, fix the first error first. If you can’t find it on the line identified as the line
with the error, check the preceding line.

Be aware of the fact that a particular compiler accepts a program doesn’t necessarily
mean that the program is valid C++. And the fact that a particular compiler rejects a pro-
gram doesn’t necessarily mean that the program is invalid C++. However, current compil-
ers are more compliant with the Standard than their predecessors of a few years ago. Also
compilers typically have options to control how strict the compiler is.

Tip

Occasionally, compilers get confused after incompletely building a program and respond by
giving meaningless error messages that cannot be fixed. In such cases, you can clear things
up by selecting Build All to restart the process from scratch. Unfortunately, it is difficult to

distinguish this situation from the more common one in which the error messages merely
seem to be meaningless.

Usually, the IDE lets you run the program in an auxiliary window. Some IDEs close
the window as soon as the program finishes execution, and some leave it open. If your
compiler closes the window, you’ll have a hard time seeing the output unless you have
quick eyes and a photographic memory. To see the output, you must place some additional
code at the end of the program:

cin.get(); // add this statement
cin.get(); // and maybe this, too
return 0;

The cin.get () statement reads the next keystroke, so this statement causes the pro-
gram to wait until you press the Enter key. (No keystrokes get sent to a program until you
press Enter, so there’s no point in pressing another key.) The second statement is needed if
the program otherwise leaves an unprocessed keystroke after its regular input. For exam-
ple, if you enter a number, you type the number and then press Enter. The program reads
the number but leaves the Enter keystroke unprocessed, and it is then read by the first

cin.get ().

Summary

C++ on the Macintosh

Apple currently supplies a developer framework called Xcode with the Mac OS X oper-
ating system. It’s free but normally not preinstalled.You can install it from the operating
system installation disks, or you can download it for a nominal fee from Apple. (Be aware
that it is over a 4GB download.) Not only does it provide an IDE that supports several
programming languages, it also installs a couple of compilers—g++ and clang—that can
be used as command-line programs in the Unix mode accessible through the Terminal
utility.

Tip
For IDEs: To save time, you can use just one project for all the sample programs. Just delete

the previous sample source code file from the project list and add the current source code.
This saves time, effort, and lessens disk clutter.

Summary

As computers have grown more powerful, computer programs have become larger and
more complex. In response to these conditions, computer languages have evolved so that
it’s easier to manage the programming process. The C language incorporated features such
as control structures and functions to better control the flow of a program and to enable a
more structured, modular approach. To these tools C++ adds support for object-oriented
programming and generic programming. This enables even more modularity and facili-
tates the creation of reusable code, which saves time and increases program reliability.

The popularity of C++ has resulted in a large number of implementations for many
computing platforms; the C++ ISO standards (C++98/03 and C++11) provide a basis
for keeping these many implementations mutually compatible. The standards establishes
the features the language should have, the behavior the language should display, and a
standard library of functions, classes, and templates. The standards supports the goal of a
portable language across different computing platforms and different implementations of
the language.

To create a C++ program, you create one or more source files containing the program
as expressed in the C++ language. These are text files that must be compiled and linked
to produce the machine-language files that constitute executable programs. These tasks
are often accomplished in an IDE that provides a text editor for creating the source files, a
compiler and a linker for producing executable files, and other resources, such as project
management and debugging capabilities. But the same tasks can also be performed in a
command-line environment by invoking the appropriate tools individually.

25

This page intentionally left blank

Setting Out to C++

In this chapter you’ll learn about the following:

= Creating a C++ program

= The general format for a C++ program

= The #include directive

= The main () function

= Using the cout object for output

= Placing comments in a C++ program

= How and when to use endl

= Declaring and using variables

= Using the cin object for input

= Defining and using simple functions

When you construct a simple home, you begin with the foundation and the frame-
work. If you don’t have a solid structure from the beginning, you’ll have trouble later fill-
ing in the details, such as windows, door frames, observatory domes, and parquet
ballrooms. Similarly, when you learn a computer language, you should begin by learning
the basic structure for a program. Only then can you move on to the details, such as loops
and objects. This chapter gives you an overview of the essential structure of a C++ pro-
gram and previews some topics—notably functions and classes—covered in much greater

detail in later chapters. (The idea is to introduce at least some of the basic concepts grad-
ually en route to the great awakenings that come later.)

C++ Initiation

Let’s begin with a simple C++ program that displays a message. Listing 2.1 uses the C++
cout (pronounced “see-out”) facility to produce character output. The source code
includes several comments to the reader; these lines begin with //, and the compiler
ignores them. C++ is case sensitive; that is, it discriminates between uppercase characters

Chapter 2 Setting Out to C++

and lowercase characters. This means you must be careful to use the same case as in the
examples. For example, this program uses cout, and if you substitute Cout or cout, the
compiler rejects your offering and accuses you of using unknown identifiers. (The com-
piler is also spelling sensitive, so don’t try kout or coot, either.) The cpp filename exten-
sion is a common way to indicate a C++ program; you might need to use a different
extension, as described in Chapter 1, “Getting Started with C++.

Listing 2.1 myfirst.cpp

// myfirst.cpp -- displays a message

#include <iostreams> // a PREPROCESSOR directive
int main() // function header
{ // start of function body
using namespace std; // make definitions visible
cout << "Come up and C++ me some time."; // message
cout << endl; // start a new line
cout << "You won’t regret it!" << endl; // more output
return 0; // terminate main ()
} // end of function body

Program Adjustments

You might find that you must alter the examples in this book to run on your system. The
most common reason is a matter of the programming environment. Some windowing envi-
ronments run the program in a separate window and then automatically close the window
when the program finishes. As discussed in Chapter 1, you can make the window stay open
until you strike a key by adding the following line of code before the return statement:

cin.get();

For some programs you must add two of these lines to keep the window open until you
press a key. You'll learn more about cin.get () in Chapter 4, “Compound Types.”

If you have a very old system, it may not support features introduced by the C++98 standard.

Some programs require a compiler with some level of support for the C++11 standard. They
will be clearly identified and, if possible, alternative non-C++11 code will be suggested.

After you use your editor of choice to copy this program (or else use the source code
files available online from this book’s web page—check the registration link on the back
cover for more information), you can use your C++ compiler to create the executable
code, as Chapter 1 outlines. Here is the output from running the compiled program in
Listing 2.1:

Come up and C++ me some time.
You won’t regret it!

C++ Initiation

C Input and Output

If you're used to programming in C, seeing cout instead of the print£ () function might
come as a minor shock. C++ can, in fact, use printf (), scanf (), and all the other stan-
dard C input and output functions, provided that you include the usual C stdio.h file. But
this is a C++ book, so it uses C++’s input facilities, which improve in many ways upon the C
versions.

You construct C++ programs from building blocks called functions. Typically, you
organize a program into major tasks and then design separate functions to handle those
tasks. The example shown in Listing 2.1 is simple enough to consist of a single function
named main (). The myfirst.cpp example has the following elements:

» Comments, indicated by the // prefix

= A preprocessor #include directive

= A function header: int main ()

= A using namespace directive

= A function body, delimited by { and }

= Statements that uses the C++ cout facility to display a message
= A return statement to terminate the main () function

Let’s look at these various elements in greater detail. The main () function is a good
place to start because some of the features that precede main (), such as the preprocessor
directive, are simpler to understand after you see what main () does.

Features of the main () Function

Stripped of the trimmings, the sample program shown in Listing 2.1 has the following
fundamental structure:

int main()

{

statements
return 0;

These lines state that there is a function called main (), and they describe how the
function behaves. Together they constitute a function definition. This definition has two
parts: the first line, int main (), which is called the function header, and the portion
enclosed in braces ({ and }), which is the function body. (A quick search on the Web reveals
braces also go by other names, including “curly brackets,” “flower brackets,” “fancy brack-
ets,” and “chicken lips.”” However, the ISO Standard uses the term “braces.”’) Figure 2.1
shows the main () function.The function header is a capsule summary of the function’s
interface with the rest of the program, and the function body represents instructions to
the computer about what the function should do. In C++ each complete instruction is
called a statement.You must terminate each statement with a semicolon, so don’t omit the
semicolons when you type the examples.

29

30

Chapter 2 Setting Out to C++

function name

int main() } function header

({
function
definition

A

return 0

statements
-} function body

} terminates functlon
|-

Statements are C++ expressions terminated by a semicolon.

Figure 2.1 The main () function.

The final statement in main (), called a return statement, terminates the function.You’ll
learn more about the return statement as you read through this chapter.

Statements and Semicolons

A statement represents an action to be taken. To understand your source code, a compiler
needs to know when one statement ends and another begins. Some languages use a state-
ment separator. FORTRAN, for example, uses the end of the line to separate one statement
from the next. Pascal uses a semicolon to separate one statement from the next. In Pascal
you can omit the semicolon in certain cases, such as after a statement just before an END,
when you aren’t actually separating two statements. (Pragmatists and minimalists will dis-
agree about whether can implies should.) But C++, like C, uses a semicolon as a terminator
rather than as a separator. The difference is that a semicolon acting as a terminator is part
of the statement rather than a marker between statements. The practical upshot is that in
C++ you should never omit the semicolon.

The Function Header as an Interface

Right now the main point to remember is that C++ syntax requires you to begin the
definition of the main () function with this header: int main ().This chapter discusses the
function header syntax in more detail later, in the section “Functions,” but for those who
can’t put their curiosity on hold, here’s a preview.

In general, a C++ function is activated, or called, by another function, and the function
header describes the interface between a function and the function that calls it. The part
preceding the function name is called the function return type; it describes information flow
from a function back to the function that calls it. The part within the parentheses follow-
ing the function name is called the argument list or parameter list; it describes information
flow from the calling function to the called function. This general description is a bit con-
fusing when you apply it to main () because you normally don’t call main () from other
parts of your program. Typically, however, main () is called by startup code that the com-
piler adds to your program to mediate between the program and the operating system

C++ Initiation

(Unix, Windows 7, Linux, or whatever). In effect, the function header describes the inter-
face between main () and the operating system.

Consider the interface description for main (), beginning with the int part. A C++
function called by another function can return a value to the activating (calling) function.
That value is called a return value. In this case, main () can return an integer value, as indi-
cated by the keyword int. Next, note the empty parentheses. In general, a C++ function
can pass information to another function when it calls that function. The portion of the
function header enclosed in parentheses describes that information. In this case, the empty
parentheses mean that the main () function takes no information, or in the usual termi-
nology, main () takes no arguments. (To say that main () takes no arguments doesn’t mean
that main () is an unreasonable, authoritarian function. Instead, argument is the term com-
puter buffs use to refer to information passed from one function to another.)

In short, the following function header states that the main () function returns an inte-
ger value to the function that calls it and that main () takes no information from the func-
tion that calls it:

int main()

Many existing programs use the classic C function header instead:

main () // original C style

Under classic C, omitting the return type is the same as saying that the function is type
int. However, C++ has phased out that usage.
You can also use this variant:

int main(void) // very explicit style

Using the keyword void in the parentheses is an explicit way of saying that the func-
tion takes no arguments. Under C++ (but not C), leaving the parentheses empty is the
same as using void in the parentheses. (In C, leaving the parentheses empty means you are
remaining silent about whether there are arguments.)

Some programmers use this header and omit the return statement:

void main()

This is logically consistent because a void return type means the function doesn’t
return a value. However, although this variant works on some systems, it’s not part of the
C++ Standard. Thus, on other systems it fails. So you should avoid this form and use the
C++ Standard form; it doesn’t require that much more effort to do it right.

Finally, the ISO C++ Standard makes a concession to those who complain about the
tiresome necessity of having to place a return statement at the end of main (). If the com-
piler reaches the end of main () without encountering a return statement, the effect will
be the same as if you ended main () with this statement:

return 0;

This implicit return is provided only for main () and not for any other function.

31

32

Chapter 2 Setting Out to C++

Why main () by Any Other Name Is Not the Same

There’s an extremely compelling reason to name the function in the myfirst.cpp pro-
gram main () :You must do so. Ordinarily, a C++ program requires a function called

main (). (And not, by the way, Main () or MAIN() or mane (). Remember, case and spelling
count.) Because the myfirst.cpp program has only one function, that function must bear
the responsibility of being main (). When you run a C++ program, execution always
begins at the beginning of the main () function. Therefore, if you don’t have main (), you
don’t have a complete program, and the compiler points out that you haven’t defined a
main () function.

There are exceptions. For example, in Windows programming you can write a dynamic
link library (DLL) module. This is code that other Windows programs can use. Because a
DLL module is not a standalone program, it doesn’t need a main (). Programs for special-
ized environments, such as for a controller chip in a robot, might not need a main ().
Some programming environments provide a skeleton program calling some nonstandard
function, such as _tmain ();in that case there is a hidden main () that calls _tmain().But
your ordinary standalone program does need a main () ; this books discusses that sort of
program.

C++ Comments

The double slash (//) introduces a C++ comment. A comment is a remark from the pro-
grammer to the reader that usually identifies a section of a program or explains some
aspect of the code.The compiler ignores comments. After all, it knows C++ at least as
well as you do, and, in any case, it’s incapable of understanding comments. As far as the
compiler is concerned, Listing 2.1 looks as if it were written without comments, like this:

#include <iostream>
int main()

{
using namespace std;
cout << "Come up and C++ me some time.";
cout << endl;
cout << "You won’t regret it!" << endl;
return 0;

C++ comments run from the // to the end of the line. A comment can be on its own
line, or it can be on the same line as code. Incidentally, note the first line in Listing 2.1:

// myfirst.cpp -- displays a message

In this book all programs begin with a comment that gives the filename for the source
code and a brief program summary. As mentioned in Chapter 1, the filename extension
for source code depends on your C++ system. Other systems might use myfirst.cC or
myfirst.cxx for names.

C++ Initiation

Tip

You should use comments to document your programs. The more complex the program, the
more valuable comments are. Not only do they help others to understand what you have
done, but also they help you understand what you've done, especially if you haven’t looked
at the program for a while.

C-Style Comments
C++ also recognizes C comments, which are enclosed between /* and */ symbols:

#include <iostreams> /* a C-style comment */

Because the C-style comment is terminated by */ rather than by the end of a line, you can
spread it over more than one line. You can use either or both styles in your programs. How-
ever, try sticking to the C++ style. Because it doesn’t involve remembering to correctly pair
an end symbol with a begin symbol, it's less likely to cause problems. Indeed, C99 has
added the // comment to the C language.

The C++ Preprocessor and the iostream File

Here’s the short version of what you need to know. If your program is to use the usual
C++ input or output facilities, you provide these two lines:

#include <iostream>
using namespace std;

There are some alternatives to using the second line, but let’s keep things simple for
now. (If your compiler doesn’t like these lines, it’s not C++98 compatible, and it will have
many other problems with the examples in this book.) That’s all you really must know to
make your programs work, but now let’s take a more in-depth look.

C++,like C, uses a preprocessor. This is a program that processes a source file before the
main compilation takes place. (Some C++ implementations, as you might recall from
Chapter 1, use a translator program to convert a C++ program to C.Although the transla-
tor is also a form of preprocessor, we’re not discussing that preprocessor; instead, we’re dis-
cussing the one that handles directives whose names begin with #.) You don’t have to do
anything special to invoke this preprocessor. It automatically operates when you compile
the program.

Listing 2.1 uses the #include directive:

#include <iostream> // a PREPROCESSOR directive

This directive causes the preprocessor to add the contents of the iostrean file to your
program. This is a typical preprocessor action: adding or replacing text in the source code
before it’s compiled.

This raises the question of why you should add the contents of the iostream file to
the program. The answer concerns communication between the program and the outside
world. The io in iostream refers to input, which is information brought into the pro-
gram, and to output, which is information sent out from the program. C++’ input/output
scheme involves several definitions found in the iostreanm file.Your first program needs

33

34

Chapter 2 Setting Out to C++

these definitions to use the cout facility to display a message. The #include directive
causes the contents of the iostream file to be sent along with the contents of your file to
the compiler. In essence, the contents of the iostrean file replace the #include
<iostreams line in the program.Your original file is not altered, but a composite file
formed from your file and iostream goes on to the next stage of compilation.

Note
Programs that use cin and cout for input and output must include the iostream file.

Header Filenames

Files such as iostream are called include files (because they are included in other files) or
header files (because they are included at the beginning of a file). C++ compilers come
with many header files, each supporting a particular family of facilities. The C tradition
has been to use the h extension with header files as a simple way to identify the type of
file by its name. For example, the C math.h header file supports various C math functions.
Initially, C++ did the same. For instance, the header file supporting input and output was
named iostream.h. But C++ usage has changed. Now the h extension is reserved for the
old C header files (which C++ programs can still use), whereas C++ header files have no
extension. There are also C header files that have been converted to C++ header files.
These files have been renamed by dropping the h extension (making it a C++-style
name) and prefixing the filename with a ¢ (indicating that it comes from C). For example,
the C++ version of math.h is the cmath header file. Sometimes the C and C++ versions
of C header files are identical, whereas in other cases the new version might have a few
changes. For purely C++ header files such as iostream, dropping the h is more than a
cosmetic change, for the h-free header files also incorporate namespaces, the next topic in
this chapter. Table 2.1 summarizes the naming conventions for header files.

Table 2.1 Header File Naming Conventions

Kind of Header Convention Example Comments

C++ old style Endsin .h iostream.h Usable by C++ programs

C old style Endsin .h math.h Usable by C and C++ programs

C++ new style No extension iostream Usable by C++ programs, uses
namespace std

Converted C c prefix, no cmath Usable by C++ programs, might use

extension non-C features, such as namespace

std

In view of the C tradition of using different filename extensions to indicate different
file types, it appears reasonable to have some special extension, such as .hpp or .hxx, to
indicate C++ header files. The ANSI/ISO committee felt so, too. The problem was agree-
ing on which extension to use, so eventually they agreed on nothing.

C++ Initiation

Namespaces

If you use iostream instead of iostream.h, you should use the following namespace
directive to make the definitions in iostream available to your program:

using namespace std;

This is called a using directive. The simplest thing to do is to accept this for now and
worry about it later (for example, in Chapter 9, “Memory Models and Namespaces”). But
so you won'’t be left completely in the dark, here’s an overview of what’s happening.

Namespace support is a C++ feature designed to simplify the writing of large pro-
grams and of programs that combine pre-existing code from several vendors and to help
organize programs. One potential problem is that you might use two prepackaged prod-
ucts that both have, say, a function called wanda () . If you then use the wanda () function,
the compiler won’t know which version you mean. The namespace facility lets a vendor
package its wares in a unit called a namespace so that you can use the name of a namespace
to indicate which vendor’s product you want. So Microflop Industries could place its defi-
nitions in a namespace called Microflop.Then Microflop: :wanda () would become the
full name for its wanda () function. Similarly, Piscine: :wanda () could denote Piscine
Corporation’s version of wanda () . Thus, your program could now use the namespaces to
discriminate between various versions:

Microflop::wanda ("go dancing?"); // use Microflop namespace version
Piscine::wanda("a fish named Desire"); // use Piscine namespace version

In this spirit, the classes, functions, and variables that are a standard component of C++
compilers are now placed in a namespace called std.This takes place in the h-free header
files. This means, for example, that the cout variable used for output and defined in
iostream is really called std: :cout and that endl is really std: :endl. Thus, you can omit
the using directive and, instead, code in the following style:

std::cout << "Come up and C++ me some time.";
std::cout << std::endl;

However, many users don't feel like converting pre-namespace code, which uses
iostream.h and cout, to namespace code, which uses iostream and std: : cout, unless
they can do so without a lot of hassle. This is where the using directive comes in.The fol-
lowing line means you can use names defined in the std namespace without using the
std: : prefix:

using namespace std;

This using directive makes all the names in the std namespace available. Modern prac-
tice regards this as a bit lazy and potentially a problem in large projects. The preferred
approaches are to use the std:: qualifier or to use something called a using declaration
to make just particular names available:
using std::cout; // make cout available

using std::endl; // make endl available
using std::cin; // make cin available

35

36

Chapter 2 Setting Out to C++

If you use these directives instead of the following, you can use cin and cout without
attaching std: : to them:

using namespace std; // lazy approach, all names available

But if you need to use other names from iostream, you have to add them to the
using list individually. This book initially uses the lazy approach for a couple reasons. First,
for simple programs, it’s not really a big issue which namespace management technique
you use. Second, I'd rather emphasize the more basic aspects about learning C++. Later,
the book uses the other namespace techniques.

C++ Output with cout

Now let’s look at how to display a message. The myfirst.cpp program uses the following
C++ statement:

cout << "Come up and C++ me some time.";

The part enclosed within the double quotation marks is the message to print. In C++,
any series of characters enclosed in double quotation marks is called a character string, pre-
sumably because it consists of several characters strung together into a larger unit. The <<
notation indicates that the statement is sending the string to cout; the symbols point the
way the information flows. And what is cout? It’s a predefined object that knows how to
display a variety of things, including strings, numbers, and individual characters. (An object,
as you might remember from Chapter 1, is a particular instance of a class, and a class
defines how data is stored and used.)

Well, using objects so soon is a bit awkward because you won't learn about objects for
several more chapters. Actually, this reveals one of the strengths of objects.You don’t have
to know the innards of an object in order to use it. All you must know is its interface—
that is, how to use it. The cout object has a simple interface. If string represents a string,
you can do the following to display it:

cout << string;

This is all you must know to display a string, but now take a look at how the C++
conceptual view represents the process. In this view, the output is a stream—that is, a series
of characters flowing from the program.The cout object, whose properties are defined in
the iostream file, represents that stream. The object properties for cout include an inser-
tion operator (<<) that inserts the information on its right into the stream. Consider the
following statement (note the terminating semicolon):

cout << "Come up and C++ me some time.";
It inserts the string “Come up and C++ me some time.” into the output stream. Thus,

rather than say that your program displays a message, you can say that it inserts a string
into the output stream. Somehow, that sounds more impressive (see Figure 2.2).

C++ Initiation

the insertion
the cout object operator a string

~
cout << "C++ RULES"

| string inserted into output stream

...and then she said\nC++ RULES

Figure 2.2 Using cout to display a string.

A First Look at Operator Overloading

If you're coming to C++ from C, you probably noticed that the insertion operator (<<) looks
just like the bitwise left-shift operator (<<). This is an example of operator overloading, by
which the same operator symbol can have different meanings. The compiler uses the con-
text to figure out which meaning is intended. C itself has some operator overloading. For
example, the & symbol represents both the address operator and the bitwise AND operator.
The * symbol represents both multiplication and dereferencing a pointer. The important
point here is not the exact function of these operators but that the same symbol can have
more than one meaning, with the compiler determining the proper meaning from the context.
(You do much the same when you determine the meaning of “sound” in “sound card” versus
“sound financial basis.”) C++ extends the operator overloading concept by letting you rede-
fine operator meanings for the user-defined types called classes.

The Manipulator endl
Now let’s examine an odd-looking notation that appears in the second output statement
in Listing 2.1:
cout << endl;
endl is a special C++ notation that represents the important concept of beginning a

new line. Inserting end1 into the output stream causes the screen cursor to move to the
beginning of the next line. Special notations like end1 that have particular meanings to

37

38

Chapter 2 Setting Out to C++

cout are dubbed manipulators. Like cout, endl is defined in the iostream header file and
is part of the std namespace.

Note that the cout facility does not move automatically to the next line when it prints
a string, so the first cout statement in Listing 2.1 leaves the cursor positioned just after the
period at the end of the output string. The output for each cout statement begins where
the last output ended, so omitting endl would result in this output for Listing 2.1:

Come up and C++ me some time.You won’t regret it!

Note that the Y immediately follows the period. Let’s look at another example. Sup-
pose you try this code:
cout << "The Good, the";
cout << "Bad, ";
cout << "and the Ukulele";
cout << endl;

It produces the following output:
The Good, theBad, and the Ukulele

Again, note that the beginning of one string comes immediately after the end of the
preceding string. If you want a space where two strings join, you must include it in one of

the strings. (Remember that to try out these output examples, you have to place them in a
complete program, with a main () function header and opening and closing braces.)

The Newline Character

C++ has another, more ancient, way to indicate a new line in output—the C notation \n:
cout << "What’s next?\n"; // \n means start a new line
The \n combination is considered to be a single character called the newline character.

If you are displaying a string, you need less typing to include the newline as part of the
string than to tag an endl onto the end:

cout << "Pluto is a dwarf planet.\n"; // show text, go to next line
cout << "Pluto is a dwarf planet." << endl; // show text, go to next line

On the other hand, if you want to generate a newline by itself, both approaches take
the same amount of typing, but most people find the keystrokes for endl to be more

comfortable:
cout << "\n"; // start a new line
cout << endl; // start a new line

Typically, this book uses an embedded newline character (\n) when displaying quoted
strings and the endl manipulator otherwise. One difference is that endl guarantees the
output will be flushed (in, this case, immediately displayed onscreen) before the program
moves on.You don’t get that guarantee with "\n", which means that it is possible on some

C++ Initiation

systems in some circumstances a prompt might not be displayed until after you enter the
information being prompted for.

The newline character is one example of special keystroke combinations termed
“escape sequences”’; they are further discussed in Chapter 3,“Dealing with Data.”

C++ Source Code Formatting

Some languages, such as FORTR AN, are line-oriented, with one statement to a line. For
these languages, the carriage return (generated by pressing the Enter key or the Return
key) serves to separate statements. In C++, however, the semicolon marks the end of each
statement. This leaves C++ free to treat the carriage return in the same way as a space or a
tab. That is, in C++ you normally can use a space where you would use a carriage return
and vice versa. This means you can spread a single statement over several lines or place
several statements on one line. For example, you could reformat myfirst.cpp as follows:

#include <iostream>
int
main
() { |using
namespace
std; cout
<<
"Come up and C++ me some time."
; cout <<
endl; cout <<
"You won't regret it!" <<
endl;return 0; }

This is visually ugly but valid code.You do have to observe some rules. In particular, in
C and C++ you can’t put a space, tab, or carriage return in the middle of an element such
as a name, nor can you place a carriage return in the middle of a string. Here are examples
of what you can’t do:

int ma in() // INVALID -- space in name
re
turn 0; // INVALID -- carriage return in word

cout << "Behold the Beans
of Beauty!"; // INVALID -- carriage return in string

(However, the raw string, added by C++11 and discussed briefly in Chapter 4, does
allow including a carriage return in a string.)

Tokens and White Space in Source Code

The indivisible elements in a line of code are called fokens (see Figure 2.3). Generally, you
must separate one token from the next with a space, tab, or carriage return, which collec-
tively are termed white space. Some single characters, such as parentheses and commas, are

39

40 Chapter 2 Setting Out to C++

tokens that need not be set off by white space. Here are some examples that illustrate
when white space can be used and when it can be omitted:

tokens

——l1
main()
| white space (newline)
‘ white space (space)
token

T
=}
~+

Spaces and carriage returns can be used interchangeably.

token
int white space (newline)
white space (space)
L1

tokens

Figure 2.3 Tokens and white space.

returno; // INVALID, must be return 0;
return(0) ; // VALID, white space omitted

return (0); // VALID, white space used

intmain () ; // INVALID, white space omitted

int main() // VALID, white space omitted in ()
int main () // ALSO VALID, white space used in ()

C++ Source Code Style
Although C++ gives you much formatting freedom, your programs will be easier to read
if you follow a sensible style. Having valid but ugly code should leave you unsatisfied.
Most programmers use styles similar to that of Listing 2.1, which observes these rules:
» One statement per line
= An opening brace and a closing brace for a function, each of which is on its own line
= Statements in a function indented from the braces
= No whitespace around the parentheses associated with a function name
The first three rules have the simple intent of keeping the code clean and readable. The

fourth helps to differentiate functions from some built-in C++ structures, such as loops,
that also use parentheses. This book alerts you to other guidelines as they come up.

C++ Statements

C++ Statements

A C++ program is a collection of functions, and each function is a collection of state-
ments. C++ has several kinds of statements, so let’s look at some of the possibilities. Listing
2.2 provides two new kinds of statements. First, a declaration statement creates a variable.
Second, an assignment statement provides a value for that variable. Also the program shows a
new capability for cout.

Listing 2.2 carrots.cpp

// carrots.cpp -- food processing program
// uses and displays a variable

#include <iostream>

int main()

{

using namespace std;
int carrots; // declare an integer variable

carrots = 25; // assign a value to the variable

cout << "I have ";

cout << carrots; // display the value of the variable

cout << " carrots.";

cout << endl;

carrots = carrots - 1; // modify the variable

cout << "Crunch, crunch. Now I have " << carrots << " carrots." << endl;
return 0;

A blank line separates the declaration from the rest of the program.This practice is the
usual C convention, but it’s somewhat less common in C++. Here is the program output
for Listing 2.2:

I have 25 carrots.
Crunch, crunch. Now I have 24 carrots.

The next few pages examine this program.

Declaration Statements and Variables

Computers are precise, orderly machines. To store an item of information in a computer,
you must identify both the storage location and how much memory storage space the
information requires. One relatively painless way to do this in C++ is to use a declaration
statement to indicate the type of storage and to provide a label for the location. For exam-
ple, the program in Listing 2.2 has this declaration statement (note the semicolon):

int carrots;

41

42

Chapter 2 Setting Out to C++

This statement provides two kinds of information: the type of memory storage needed
and a label to attach to that storage. In particular, the statement declares that the program
requires enough storage to hold an integer, for which C++ uses the label int.The com-
piler takes care of the details of allocating and labeling memory for that task. C++ can
handle several kinds, or types, of data, and the int is the most basic data type. It corre-
sponds to an integer, a number with no fractional part. The C++ int type can be positive
or negative, but the size range depends on the implementation. Chapter 3 provides the
details on int and the other basic types.

Naming the storage is the second task achieved. In this case, the declaration statement
declares that henceforth the program will use the name carrots to identify the value
stored at that location. carrots is called a variable because you can change its value. In
C++ you must declare all variables. If you were to omit the declaration in carrots.cpp,
the compiler would report an error when the program attempts to use carrots further
on. (In fact, you might want to try omitting the declaration just to see how your compiler
responds. Then if you see that response in the future, you’ll know to check for omitted
declarations.)

Why Must Variables Be Declared?

Some languages, notably BASIC, create a new variable whenever you use a new name, with-
out the aid of explicit declarations. That might seem friendlier to the user, and it is—in the
short term. The problem is that if you misspell the name of a variable, you inadvertently can
create a new variable without realizing it. That is, in BASIC, you can do something like the
following:

CastleDark = 34

CastleDank = CastleDark + MoreGhosts

PRINT CastleDark

Because CastleDank is misspelled (the r was typed as an n), the changes you make to it
leave castleDark unchanged. This kind of error can be hard to trace because it breaks no
rules in BASIC. However, in C++, CastleDark would be declared while the misspelled
CastleDank would not be declared. Therefore, the equivalent C++ code breaks the rule
about the need to declare a variable for you to use it, so the compiler catches the error and
stomps the potential bug.

In general, then, a declaration indicates the type of data to be stored and the name the
program will use for the data that’s stored there. In this particular case, the program creates
a variable called carrots in which it can store an integer (see Figure 2.4).

The declaration statement in the program is called a defining declaration statement, or
definition, for short. This means that its presence causes the compiler to allocate memory
space for the variable. In more complex situations, you can also have reference declarations.
These tell the computer to use a variable that has already been defined elsewhere. In gen-
eral, a declaration need not be a definition, but in this example it is.

C++ Statements

int carrots;
T 7T

type of name of

data to variable

be stored semicolon
marks end of
statement

Figure 2.4 A variable declaration.

If you’re familiar with C or Pascal, you're already familiar with variable declarations.
You also might have a modest surprise in store for you. In C and Pascal, all variable decla-
rations normally come at the very beginning of a function or procedure. But C++ has no
such restriction. Indeed, the usual C++ style is to declare a variable just before it is first
used. That way, you don’t have to rummage back through a program to see what the type
is.You’ll see an example of this later in this chapter. This style does have the disadvantage
of not gathering all your variable names in one place; thus, you can’t tell at a glance what
variables a function uses. (Incidentally, C99 now makes the rules for C declarations much
the same as for C++.)

Tip

The C++ style for declaring variables is to declare a variable as close to its first use as
possible.

Assighment Statements

An assignment statement assigns a value to a storage location. For example, the following
statement assigns the integer 25 to the location represented by the variable carrots:

carrots = 25;

The = symbol is called the assignment operator. One unusual feature of C++ (and C) is
that you can use the assignment operator serially. For example, the following is valid code:
int steinway;
int baldwin;
int yamaha;
yamaha = baldwin = steinway = 88;

The assignment works from right to left. First, 88 is assigned to steinway; then the
value of steinway, which is now 88, is assigned to baldwin; then baldwin’s value of 88 is
assigned to yamaha. (C++ follows C’s penchant for allowing weird-appearing code.)

The second assignment statement in Listing 2.2 demonstrates that you can change the
value of a variable:

carrots = carrots - 1; // modify the variable

43

44

Chapter 2 Setting Out to C++

The expression to the right of the assignment operator (carrots - 1) is an example of’
an arithmetic expression. The computer will subtract 1 from 25, the value of carrots,
obtaining 24.The assignment operator then stores this new value in the carrots location.

A New Trick for cout

Up until now, the examples in this chapter have given cout strings to print. Listing 2.2
also gives cout a variable whose value is an integer:

cout << carrots;

The program doesn’t print the word carrots; instead, it prints the integer value stored
in carrots, which is 25. Actually, this is two tricks in one. First, cout replaces carrots
with its current numeric value of 25. Second, it translates the value to the proper output
characters.

As you can see, cout works with both strings and integers. This might not seem partic-
ularly remarkable to you, but keep in mind that the integer 25 is something quite different
from the string "25".The string holds the characters with which you write the number
(that is, a 2 character and a 5 character). The program internally stores the numeric codes
for the 2 character and the 5 character. To print the string, cout simply prints each charac-
ter in the string. But the integer 25 is stored as a numeric value. Rather than store each
digit separately, the computer stores 25 as a binary number. (Appendix A, “Number
Bases,” discusses this representation.) The main point here is that cout must translate a
number in integer form into character form before it can print it. Furthermore, cout is
smart enough to recognize that carrots is an integer that requires conversion.

Perhaps the contrast with old C will indicate how clever cout is. To print the string
n25" and the integer 25 in C, you could use C’s multipurpose output function printf ():
printf ("Printing a string: %s\n", "25");
printf ("Printing an integer: %d\n", 25);

Without going into the intricacies of print£ (), note that you must use special codes
(%s and %d) to indicate whether you are going to print a string or an integer. And if you
tell print£ () to print a string but give it an integer by mistake, printf () is too unsophis-
ticated to notice your mistake. It just goes ahead and displays garbage.

The intelligent way in which cout behaves stems from C++’s object-oriented features.
In essence, the C++ insertion operator (<<) adjusts its behavior to fit the type of data that
follows it. This is an example of operator overloading. In later chapters, when you take up
function overloading and operator overloading, you’ll learn how to implement such smart
designs yourself.

cout and printf ()

If you are used to C and printf£ (), you might think cout looks odd. You might even prefer
to cling to your hard-won mastery of printf (). But cout actually is no stranger in appear-
ance than printf (), with all its conversion specifications. More importantly, cout has sig-
nificant advantages. Its capability to recognize types reflects a more intelligent and foolproof

More C++ Statements

design. Also, it is extensible. That is, you can redefine the << operator so that cout can rec-
ognize and display new data types you develop. And if you relish the fine control printf ()
provides, you can accomplish the same effects with more advanced uses of cout (see
Chapter 17, “Input, Output, and Files”).

More C++ Statements

Let’s look at a couple more examples of statements. The program in Listing 2.3 expands
on the preceding example by allowing you to enter a value while the program is running.
To do so, it uses cin (pronounced “see-in”), the input counterpart to cout. Also the pro-
gram shows yet another way to use that master of versatility, the cout object.

Listing 2.3 getinfo.cpp

// getinfo.cpp -- input and output
#include <iostream>

int main()

{

using namespace std;
int carrots;

cout << "How many carrots do you have?" << endl;
cin >> carrots; // C++ input
cout << "Here are two more. ";
carrots = carrots + 2;
// the next line concatenates output
cout << "Now you have " << carrots << " carrots." << endl;
return 0;

Program Adjustments

If you found that you had to add a cin.get () statement in the earlier listings, you will need
to add two cin.get () statements to this listing to keep the program output visible
onscreen. The first one will read the newline generated when you press the Enter or Return
key after typing a number, and the second will cause the program to pause until you hit
Return or Enter again.

Here is an example of output from the program in Listing 2.3:

How many carrots do you have?
12
Here are two more. Now you have 14 carrots.

The program has two new features: using cin to read keyboard input and combining
four output statements into one. Let’s take a look.

45

46

Chapter 2 Setting Out to C++

Using cin
As the output from Listing 2.3 demonstrates, the value typed from the keyboard (12) is
eventually assigned to the variable carrots.The following statement performs that wonder:

cin >> carrots;

Looking at this statement, you can practically see information flowing from cin into
carrots. Naturally, there is a slightly more formal description of this process. Just as C++
considers output to be a stream of characters flowing out of the program, it considers
input to be a stream of characters flowing into the program.The iostream file defines cin
as an object that represents this stream. For output, the << operator inserts characters into
the output stream. For input, cin uses the >> operator to extract characters from the input
stream. Typically, you provide a variable to the right of the operator to receive the
extracted information. (The symbols << and >> were chosen to visually suggest the direc-
tion in which information flows.)

Like cout, cin is a smart object. It converts input, which is just a series of characters
typed from the keyboard, into a form acceptable to the variable receiving the information.
In this case, the program declares carrots to be an integer variable, so the input is con-
verted to the numeric form the computer uses to store integers.

Concatenating with cout

The second new feature of getinfo.cpp is combining four output statements into one.
The iostream file defines the << operator so that you can combine (that is, concatenate)
output as follows:

cout << "Now you have " << carrots << " carrots." << endl;

This allows you to combine string output and integer output in a single statement. The
resulting output is the same as what the following code produces:

cout << "Now you have ";
cout << carrots;

cout << " carrots";

cout << endl;

While you’re still in the mood for cout advice, you can also rewrite the concatenated
version this way, spreading the single statement over four lines:
cout << "Now you have "
<< carrots
<< " carrots."

<< endl;

That’s because C++’s free format rules treat newlines and spaces between tokens inter-
changeably. This last technique is convenient when the line width cramps your style.
Another point to note is that

Now you have 14 carrots.

More C++ Statements

appears on the same line as

Here are two more.

That’s because, as noted before, the output of one cout statement immediately follows
the output of the preceding cout statement. This is true even if there are other statements
in between.

cin and cout: A Touch of Class

You’ve seen enough of cin and cout to justify your exposure to a little object lore. In
particular, in this section you’ll learn more about the notion of classes. As Chapter 1 out-
lined briefly, classes are one of the core concepts for object-oriented programming
(OOP) in C++.

A class is a data type the user defines. To define a class, you describe what sort of infor-
mation it can represent and what sort of actions you can perform with that data. A class
bears the same relationship to an object that a type does to a variable. That is, a class defi-
nition describes a data form and how it can be used, whereas an object is an entity created
according to the data form specification. Or, in noncomputer terms, if a class is analogous
to a category such as famous actors, then an object is analogous to a particular example of
that category, such as Kermit the Frog.To extend the analogy, a class representation of
actors would include definitions of possible actions relating to the class, such as Reading
for a Part, Expressing Sorrow, Projecting Menace, Accepting an Award, and the like. If
you’ve been exposed to different OOP terminology, it might help to know that the C++
class corresponds to what some languages term an object type, and the C++ object corre-
sponds to an object instance or instance variable.

Now let’s get a little more specific. Recall the following declaration of a variable:

int carrots;

This creates a particular variable (carrots) that has the properties of the int type.That
is, carrots can store an integer and can be used in particular ways—for addition and sub-
traction, for example. Now consider cout. It is an object created to have the properties of
the ostream class. The ostream class definition (another inhabitant of the iostream file)
describes the sort of data an ostream object represents and the operations you can per-
form with and to it, such as inserting a number or string into an output stream. Similarly,
cin is an object created with the properties of the istream class, also defined in

iostream.

Note

The class describes all the properties of a data type, including actions that can be per-
formed with it, and an object is an entity created according to that description.

You have learned that classes are user-defined types, but as a user, you certainly didn’t
design the ostream and istream classes. Just as functions can come in function libraries,
classes can come in class libraries. That’s the case for the ostream and istream classes.
Technically, they are not built in to the C++ language; instead, they are examples of classes

47

48

Chapter 2 Setting Out to C++

that the language standard specifies. The class definitions are laid out in the iostream file
and are not built into the compiler.You can even modify these class definitions if you like,
although that’s not a good idea. (More precisely, it is a truly dreadful idea.) The iostream
family of classes and the related £stream (or file I/O) family are the only sets of class defi-
nitions that came with all early implementations of C++. However, the ANSI/ISO C++
committee added a few more class libraries to the Standard. Also most implementations
provide additional class definitions as part of the package. Indeed, much of the current
appeal of C++ is the existence of extensive and useful class libraries that support Unix,
Macintosh, and Windows programming.

The class description specifies all the operations that can be performed on objects of
that class. To perform such an allowed action on a particular object, you send a message to
the object. For example, if you want the cout object to display a string, you send it a mes-
sage that says, in effect, “Object! Display this!” C++ provides a couple ways to send mes-
sages. One way, using a class method, is essentially a function call like the ones you’ll see
soon. The other way, which is the one used with cin and cout, is to redefine an operator.
Thus, the following statement uses the redefined << operator to send the “display mes-
sage” to cout:

cout << "I am not a crook."

In this case, the message comes with an argument, which is the string to be displayed.
(See Figure 2.5 for a similar example.)

#include <iostream>
using namespace std;
int main() .
print message

message argument
cout << "Trust me";

) ——> Trust me
cout object
object displays argument

Figure 2.5 Sending a message to an object.

Functions

Because functions are the modules from which C++ programs are built and because they
are essential to C++ OOP definitions, you should become thoroughly familiar with
them. Some aspects of functions are advanced topics, so the main discussion of functions
comes later, in Chapter 7, “Functions: C++’s Programming Modules,” and Chapter 8,

Functions

“Adventures in Functions.” However, if we deal now with some basic characteristics of
functions, you’ll be more at ease and more practiced with functions later. The rest of this
chapter introduces you to these function basics.

C++ functions come in two varieties: those with return values and those without
them.You can find examples of each kind in the standard C++ library of functions, and
you can create your own functions of each type. Let’s look at a library function that has a
return value and then examine how you can write your own simple functions.

Using a Function That Has a Return Value

A function that has a return value produces a value that you can assign to a variable or use
in some other expression. For example, the standard C/C++ library includes a function
called sqrt () that returns the square root of a number. Suppose you want to calculate the
square root of 6.25 and assign it to the variable x.You can use the following statement in
your program:

X = sqrt(6.25); // returns the value 2.5 and assigns it to x

The expression sqrt (6.25) invokes, or calls, the sqrt () function. The expression
sqgrt (6.25) is termed a _function call, the invoked function is termed the called function, and
the function containing the function call is termed the calling function (see Figure 2.6).

Calling Function Called Function

int main() code for sqgrt()

{

o
X = sqrt(6.25); 8
I T

ing function

Figure 2.6 Calling a function.

The value in the parentheses (6.25, in this example) is information that is sent to the
function; it is said to be passed to the function. A value that is sent to a function this way is
called an argument or parameter (see Figure 2.7). The sqrt () function calculates the answer
to be 2.5 and sends that value back to the calling function; the value sent back is termed
the return value of the function. Think of the return value as what is substituted for the
function call in the statement after the function finishes its job. Thus, this example assigns
the return value to the variable x. In short, an argument is information sent to the func-
tion, and the return value is a value sent back from the function.

49

50

Chapter 2 Setting Out to C++

argument -
information
passed to

function

function
name

l semicolon marks
X = sqrt(6.25) ;«—— end of

T statement

opening
parenthesis

function return closing
value assigned parenthesis
to x

Figure 2.7 Function call syntax.

That’s practically all there is to it, except that before the C++ compiler uses a function,
it must know what kind of arguments the function uses and what kind of return value it
has. That is, does the function return an integer? a character? a number with a decimal
fraction? a guilty verdict? or something else? If it lacks this information, the compiler
won’t know how to interpret the return value. The C++ way to convey this information
is to use a function prototype statement.

Note

A C++ program should provide a prototype for each function used in the program.

A function prototype does for functions what a variable declaration does for variables:
It tells what types are involved. For example, the C++ library defines the sqrt () function
to take a number with (potentially) a fractional part (like 6.25) as an argument and to
return a number of the same type. Some languages refer to such numbers as real numbers,
but the name C++ uses for this type is double. (You’'ll see more of double in Chapter 3.)
The function prototype for sqgrt () looks like this:

double sqgrt (double) ; // function prototype

The initial double means sqrt () returns a type double value.The double in the
parentheses means sqgrt () requires a double argument. So this prototype describes
sqrt () exactly as used in the following code:

double x; // declare x as a type double variable
X = sqrt(6.25);

The terminating semicolon in the prototype identifies it as a statement and thus makes
it a prototype instead of a function header. If you omit the semicolon, the compiler inter-
prets the line as a function header and expects you to follow it with a function body that
defines the function.

Functions

When you use sqrt () in a program, you must also provide the prototype.You can do
this in either of two ways:

= You can type the function prototype into your source code file yourself.

= You can include the cmath (math.h on older systems) header file, which has the
prototype in it.

The second way is better because the header file is even more likely than you to get
the prototype right. Every function in the C++ library has a prototype in one or more
header files. Just check the function description in your manual or with online help, if you
have it, and the description tells you which header file to use. For example, the description
of the sqgrt () function should tell you to use the cmath header file. (Again, you might
have to use the older math.h header file, which works for both C and C++ programs.)

Don’t confuse the function prototype with the function definition. The prototype, as
you've seen, only describes the function interface. That is, it describes the information sent
to the function and the information sent back.The definition, however, includes the code
for the function’s workings—for example, the code for calculating the square root of a
number. C and C++ divide these two features—prototype and definition—for library
functions. The library files contain the compiled code for the functions, whereas the
header files contain the prototypes.

You should place a function prototype ahead of where you first use the function. The
usual practice is to place prototypes just before the definition of the main () function.
Listing 2.4 demonstrates the use of the library function sqrt () ; it provides a prototype by
including the cmath file.

Listing 2.4 sqgrt.cpp

// sgrt.cpp -- using the sqgrt() function

#include <iostream>
#include <cmath> // or math.h

int main()

{

using namespace std;

double area;
cout << "Enter the floor area, in square feet, of your home: ";
cin >> area;
double side;
side = sqgrt(area);
cout << "That’s the equivalent of a square " << side
<< " feet to the side." << endl;
cout << "How fascinating!" << endl;
return 0;

51

52

Chapter 2 Setting Out to C++

Using Library Functions

C++ library functions are stored in library files. When the compiler compiles a program, it
must search the library files for the functions you've used. Compilers differ on which library
files they search automatically. If you try to run Listing 2.4 and get a message that _sqgrt is
an undefined external (sounds like a condition to avoid!), chances are that your compiler
doesn’t automatically search the math library. (Compilers like to add an underscore prefix to
function names—another subtle reminder that they have the last say about your program.) If

you get such a message, check your compiler documentation to see how to have the com-
piler search the correct library. If you get such a complaint on a Unix implementation, for
example, it may require that you use the -1m option (for library math) at the end of the com-
mand line:

CC sqgrt.C -1m
Some versions of the Gnu compiler under Linux behave similarly:
g++ sqgrt.C -1m

Merely including the cmath header file provides the prototype but does not necessarily
cause the compiler to search the correct library file.

Here’s a sample run of the program in Listing 2.4:

Enter the floor area, in square feet, of your home: 1536
That’s the equivalent of a square 39.1918 feet to the side.
How fascinating!

Because sqrt () works with type double values, the example makes the variables that
type. Note that you declare a type double variable by using the same form, or syntax, as
when you declare a type int variable:

type-name variable-name;

Type double allows the variables area and side to hold values with decimal fractions,
such as 1536.0 and 39.1918. An apparent integer, such as 1536, is stored as a real value
with a decimal fraction part of .0 when stored in a type double variable. As you’ll see in
Chapter 3, type double encompasses a much greater range of values than type int.

C++ allows you to declare new variables anywhere in a program, so sqrt .cpp didn’t
declare side until just before using it. C++ also allows you to assign a value to a variable
when you create it, so you could also have done this:

double side = sqrt(area);

You’ll learn more about this process, called initialization, in Chapter 3.

Note that cin knows how to convert information from the input stream to type
double, and cout knows how to insert type double into the output stream. As noted ear-
lier, these objects are smart.

Functions

Function Variations

Some functions require more than one item of information. These functions use multiple
arguments separated by commas. For example, the math function pow () takes two argu-
ments and returns a value equal to the first argument raised to the power given by the
second argument. It has this prototype:

double pow(double, double); // prototype of a function with two arguments

If, say, you wanted to find 5° (5 to the eighth power), you would use the function like this:

answer = pow (5.0, 8.0); // function call with a list of arguments

Other functions take no arguments. For example, one of the C libraries (the one asso-
ciated with the cstdlib or the stdlib.h header file) has a rand () function that has no
arguments and that returns a random integer. Its prototype looks like this:

int rand(void) ; // prototype of a function that takes no arguments

The keyword void explicitly indicates that the function takes no arguments. If you
omit void and leave the parentheses empty, C++ interprets this as an implicit declaration
that there are no arguments. You could use the function this way:

myGuess = rand () ; // function call with no arguments

Note that unlike some computer languages, in C++ you must use the parentheses in
the function call even if there are no arguments.

There also are functions that have no return value. For example, suppose you wrote a
function that displayed a number in dollars-and-cents format.You could send to it an
argument of, say, 23.5, and it would display $23.50 onscreen. Because this function sends a
value to the screen instead of to the calling program, it doesn’t require a return value.You
indicate this in the prototype by using the keyword void for the return type:

void bucks (double); // prototype for function with no return value

Because bucks () doesn’t return a value, you can’t use this function as part of an
assignment statement or of some other expression. Instead, you have a pure function call
statement:

bucks (1234.56) ; // function call, no return value

Some languages reserve the term function for functions with return values and use the
terms procedure or subroutine for those without return values, but C++, like C, uses the
term function for both variations.

User-Defined Functions

The standard C library provides more than 140 predefined functions. If one fits your
needs, by all means use it. But often you have to write your own, particularly when you
design classes. Anyway, it’s fun to design your own functions, so now let’s examine that
process.You've already used several user-defined functions, and they have all been named
main (). Every C++ program must have a main () function, which the user must define.

53

54

Chapter 2 Setting Out to C++

Suppose you want to add a second user-defined function. Just as with a library function,
you can call a user-defined function by using its name. And, as with a library function, you
must provide a function prototype before using the function, which you typically do by
placing the prototype above the main () definition. But now you, not the library vendor,
must provide source code for the new function. The simplest way is to place the code in
the same file after the code for main (). Listing 2.5 illustrates these elements.

Listing 2.5 ourfunc.cpp

// ourfunc.cpp -- defining your own function
#include <iostreams>

void simon(int) ; // function prototype for simon/()
int main()

{

using namespace std;

simon (3) ; // call the simon() function
cout << "Pick an integer: ";

int count;

cin >> count;

simon (count) ; // call it again

cout << "Done!" << endl;

return 0;

void simon (int n) // define the simon() function

using namespace std;

cout << "Simon says touch your toes " << n << " times." << endl;
} // void functions don’t need return statements

The main () function calls the simon () function twice, once with an argument of 3
and once with a variable argument count. In between, the user enters an integer that’s
used to set the value of count.The example doesn’t use a newline character in the cout
prompting message. This results in the user input appearing on the same line as the
prompt. Here is a sample run of the program in Listing 2.5:

Simon says touch your toes 3 times.
Pick an integer: 512

Simon says touch your toes 512 times.
Done!

Function Form

The definition for the simon () function in Listing 2.5 follows the same general form as
the definition for main () . First, there is a function header. Then, enclosed in braces, comes
the function body. You can generalize the form for a function definition as follows:

Functions

type functionname(argumentlist)

{

statements

Note that the source code that defines simon () follows the closing brace of main ().
Like C, and unlike Pascal, C++ does not allow you to embed one function definition
inside another. Each function definition stands separately from all others; all functions are
created equal (see Figure 2.8).

#include <iostream>
using namespace std;

function
prototypes

void simon(int);
double taxes(double);

1nt main()

function #1 r‘etur‘n 0;

function #2

double taxes(double t)

function #3
return 2 * t;

{vom simon(int n)

Figure 2.8 Function definitions occur
sequentially in a file.

Function Headers
The simon () function in Listing 2.5 has this header:

void simon(int n)
The initial void means that simon () has no return value. So calling simon () doesn’t

produce a number that you can assign to a variable in main (). Thus, the first function call
looks like this:

simon (3) ; // ok for void functions

Because poor simon () lacks a return value, you can’t use it this way:

simple = simon(3); // not allowed for void functions

The int n within the parentheses means that you are expected to use simon () with a
single argument of type int.The n is a new variable assigned the value passed during a

55

56

Chapter 2 Setting Out to C++

function call. Thus, the following function call assigns the value 3 to the n variable defined
in the simon () header:

simon(3) ;

When the cout statement in the function body uses n, it uses the value passed in the
function call. That’s why simon (3) displays a 3 in its output. The call to simon (count) in
the sample run causes the function to display 512 because that was the value entered for
count. In short, the header for simon () tells you that this function takes a single type int
argument and that it doesn’t have a return value.

Let’s review main ()’s function header:

int main()

The initial int means that main () returns an integer value. The empty parentheses
(which optionally could contain void) means that main () has no arguments. Functions
that have return values should use the keyword return to provide the return value and to
terminate the function. That’s why you’ve been using the following statement at the end

of main ():

return 0;

This is logically consistent: main () is supposed to return a type int value, and you have
it return the integer 0. But, you might wonder, to what are you returning a value? After
all, nowhere in any of your programs have you seen anything calling main():

squeeze = main(); // absent from our programs

The answer is that you can think of your computer’s operating system (Unix, say, or
Windows) as calling your program. So main () s return value is returned not to another
part of the program but to the operating system. Many operating systems can use the pro-
gram’s return value. For example, Unix shell scripts and Window’s command-line interface
batch files can be designed to run programs and test their return values, usually called exit
values. The normal convention is that an exit value of zero means the program ran success-
fully, whereas a nonzero value means there was a problem. Thus, you can design a C++
program to return a nonzero value if, say, it fails to open a file.You can then design a shell
script or batch file to run that program and to take some alternative action if the program
signals failure.

Keywords

Keywords are the vocabulary of a computer language. This chapter has used four C++ key-
words: int, void, return, and double. Because these keywords are special to C++, you
can’t use them for other purposes. That is, you can’'t use return as the name for a variable
or double as the name of a function. But you can use them as part of a name, as in
painter (with its hidden int) or return_aces. Appendix B, “C++ Reserved Words,” pro-
vides a complete list of C++ keywords. Incidentally, main is not a keyword because it’s not
part of the language. Instead, it is the name of a required function. You can use main as a
variable name. (That can cause a problem in circumstances too esoteric to describe here,
and because it is confusing in any case, you'd best not.) Similarly, other function names and

Functions

object names are not keywords. However, using the same name, say cout, for both an
object and a variable in a program confuses the compiler. That is, you can use cout as a
variable name in a function that doesn’t use the cout object for output, but you can’t use
cout both ways in the same function.

Using a User-Defined Function That Has a Return Value

Let’s go one step further and write a function that uses the return statement. The main ()
function already illustrates the plan for a function with a return value: Give the return
type in the function header and use return at the end of the function body.You can use
this form to solve a weighty problem for those visiting the United Kingdom. In the
United Kingdom, many bathroom scales are calibrated in stone instead of in U.S. pounds
or international kilograms. The word stone is both singular and plural in this context. (The
English language does lack the internal consistency of, say, C++.) One stone is 14 pounds,
and the program in Listing 2.6 uses a function to make this conversion.

Listing 2.6 convert.cpp

// convert.cpp -- converts stone to pounds
#include <iostream>

int stonetolb(int); // function prototype
int main()

{

using namespace std;

int stone;

cout << "Enter the weight in stone: ";
cin >> stone;

int pounds = stonetolb(stone) ;

cout << stone << " stone = ";

cout << pounds << " pounds." << endl;
return 0;

int stonetolb(int sts)

{

return 14 * sts;

Here’s a sample run of the program in Listing 2.6:

Enter the weight in stone: 15
15 stone = 210 pounds.

In main (), the program uses cin to provide a value for the integer variable stone.This
value is passed to the stonetolb() function as an argument and is assigned to the variable
sts in that function. stonetolb () then uses the return keyword to return the value of
14 * sts to main().This illustrates that you aren’t limited to following return with a
simple number. Here, by using a more complex expression, you avoid the bother of having

57

58

Chapter 2 Setting Out to C++

to create a new variable to which to assign the value before returning it. The program cal-
culates the value of that expression (210 in this example) and returns the resulting value. If
returning the value of an expression bothers you, you can take the longer route:

int stonetolb (int sts)

int pounds = 14 * sts;
return pounds;

Both versions produce the same result. The second version, because it separates the
computation process from the return process, is easier to read and modify.

In general, you can use a function with a return value wherever you would use a sim-
ple constant of the same type. For example, stonetolb () returns a type int value.This
means you can use the function in the following ways:
int aunt = stonetolb(20);
int aunts = aunt + stonetolb(10);
cout << "Ferdie weighs " << stonetolb(16) << " pounds." << endl;

In each case, the program calculates the return value and then uses that number in
these statements.

As these examples show, the function prototype describes the function interface—that
is, how the function interacts with the rest of the program.The argument list shows what
sort of information goes into the function, and the function type shows the type of value
returned. Programmers sometimes describe functions as black boxes (a term from electron-
ics) specified by the flow of information into and out of them.The function prototype
perfectly portrays that point of view (see Figure 2.9).

int stonetolb(int);

196 stonetolb()

Figure 2.9 The function prototype and the
function as a black box.

The stonetolb () function is short and simple, yet it embodies a full range of func-
tional features:

= It has a header and a body.

= It accepts an argument.

Functions

= It returns a value.

= It requires a prototype.

Consider stonetolb () as a standard form for function design.You’ll further explore
functions in Chapters 7 and 8. In the meantime, the material in this chapter should give
you a good feel for how functions work and how they fit into C++.

Placing the using Directive in Multifunction Programs
Notice that Listing 2.5 places a using directive in each of the two functions:

using namespace std;

This is because each function uses cout and thus needs access to the cout definition
from the std namespace.

There’s another way to make the std namespace available to both functions in Listing
2.5, and that’s to place the directive outside and above both functions:

// ourfuncl.cpp -- repositioning the using directive

#include <iostreams

using namespace std; // affects all function definitions in this file
void simon (int) ;

int main()

{
simon (3) ;
cout << "Pick an integer: ";
int count;
cin >> count;
simon (count) ;
cout << "Done!" << endl;
return 0;

void simon (int n)

{

cout << "Simon says touch your toes " << n << " times." << endl;

The current prevalent philosophy is that it’s preferable to be more discriminating and
limit access to the std namespace to only those functions that need access. For example,
in Listing 2.6, only main () uses cout, so there is no need to make the std namespace
available to the stonetolb() function.Thus, the using directive is placed inside the
main() function only, limiting std namespace access to just that function.

59

60

Chapter 2 Setting Out to C++

In summary, you have several choices for making std namespace elements available to a

program. Here are some:

= You can place the following above the function definitions in a file, making all the
contents of the std namespace available to every function in the file:

using namespace std;

= You can place the following in a specific function definition, making all the con-
tents of the std namespace available to that specific function:

using namespace std;

= Instead of using

using namespace std;

you can place using declarations like the following in a specific function definition
and make a particular element, such as cout, available to that function:

using std::cout;

= You can omit the using directives and declarations entirely and use the std:: pre-
fix whenever you use elements from the std namespace:

std::cout << "I'm using cout and endl from the std namespace" << std::endl;

Naming Conventions

C++ programmers are blessed (or cursed) with myriad options when naming functions,
classes, and variables. Programmers have strong and varied opinions about style, and
these often surface as holy wars in public forums. Starting with the same basic idea for a
function name, a programmer might select any of the following:

)

MyFunction (
myfunction()
myFunction()
my function()
my funct ()

The choice will depend on the development team, the idiosyncrasies of the technologies or
libraries used, and the tastes and preferences of the individual programmer. Rest assured
that any style consistent with the C++ rules presented in Chapter 3 is correct as far as the
C++ language is concerned, and it can be used based on your own judgment.

Language allowances aside, it is worth noting that a personal naming style—one that aids
you through consistency and precision—is well worth pursuing. A precise, recognizable per-
sonal naming convention is a hallmark of good software engineering, and it will aid you
throughout your programming career.

Summary

Summary

A C++ program consists of one or more modules called functions. Programs begin exe-
cuting at the beginning of the function called main () (all lowercase), so you should
always have a function by this name. A function, in turn, consists of a header and a body.
The function header tells you what kind of return value, if any, the function produces and
what sort of information it expects arguments to pass to it. The function body consists of
a series of C++ statements enclosed in paired braces ({}).

C++ statement types include the following:

= Declaration statement—A declaration statement announces the name and the
type of a variable used in a function.

= Assignment statement—An assignment statement uses the assignment operator (=)
to assign a value to a variable.

» Message statement—A message statement sends a message to an object, initiating
some sort of action.

» Function call—A function call activates a function. When the called function ter-
minates, the program returns to the statement in the calling function immediately
following the function call.

» Function prototype—A function prototype declares the return type for a function,
along with the number and type of arguments the function expects.

= Return statement—A return statement sends a value from a called function back
to the calling function.

A class is a user-defined specification for a data type. This specification details how
information is to be represented and also the operations that can be performed with the
data. An object is an entity created according to a class prescription, just as a simple vari-
able is an entity created according to a data type description.

C++ provides two predefined objects (cin and cout) for handling input and output.
They are examples of the istream and ostream classes, which are defined in the
iostream file. These classes view input and output as streams of characters. The insertion
operator (<<), which is defined for the ostream class, lets you insert data into the output
stream, and the extraction operator (>>), which is defined for the istream class, lets you
extract information from the input stream. Both cin and cout are smart objects, capable
of automatically converting information from one form to another according to the pro-
gram context.

C++ can use the extensive set of C library functions. To use a library function, you
should include the header file that provides the prototype for the function.

Now that you have an overall view of simple C++ programs, you can go on in the
next chapters to fill in details and expand horizons.

61

62

Chapter 2 Setting Out to C++

Chapter Review

You can find the answers to the chapter review at the end of each chapter in Appendix J,
“Answers to Chapter Review.”

1.
2.

What are the modules of C++ programs called?

‘What does the following preprocessor directive do?

#include <iostream>

What does the following statement do?

using namespace std;

. What statement would you use to print the phrase “Hello, world” and then start a

new line?

What statement would you use to create an integer variable with the name

cheeses?

6. What statement would you use to assign the value 32 to the variable cheeses?

7. What statement would you use to read a value from keyboard input into the vari-

10.
11.

able cheeses?
What statement would you use to print “We have X varieties of cheese,” where the
current value of the cheeses variable replaces x?

What do the following function prototypes tell you about the functions?

int froop (double t);
void rattle(int n);
int prune (void) ;

When do you not have to use the keyword return when you define a function?

Suppose your main () function has the following line:

cout << “Please enter your PIN: “;

And suppose the compiler complains that cout is an unknown identifier. What is
the likely cause of this complaint, and what are three ways to fix the problem?

Programming Exercises

1.

2.

Write a C++ program that displays your name and address (or if you value your
privacy, a fictitious name and address).

Write a C++ program that asks for a distance in furlongs and converts it to yards.

(One furlong 1s 220 yards.)

Programming Exercises

Write a C++ program that uses three user-defined functions (counting main () as
one) and produces the following output:

Three blind mice

Three blind mice

See how they run

See how they run

One function, called two times, should produce the first two lines, and the remain-
ing function, also called twice, should produce the remaining output.

Write a program that asks the user to enter his or her age. The program then should
display the age in months:

Enter your age: 29

Your age in months is 384.

Write a program that has main () call a user-defined function that takes a Celsius
temperature value as an argument and then returns the equivalent Fahrenheit value.
The program should request the Celsius value as input from the user and display
the result, as shown in the following code:

Please enter a Celsius value: 20

20 degrees Celsius is 68 degrees Fahrenheit.

For reference, here is the formula for making the conversion:
Fahrenheit = 1.8 X degrees Celsius + 32.0

Write a program that has main () call a user-defined function that takes a distance
in light years as an argument and then returns the distance in astronomical units.
The program should request the light year value as input from the user and display
the result, as shown in the following code:

Enter the number of light years: 4.2

4.2 light years = 265608 astronomical units.

An astronomical unit is the average distance from the earth to the sun (about
150,000,000 km or 93,000,000 miles), and a light year is the distance light travels in
a year (about 10 trillion kilometers or 6 trillion miles). (The nearest star after the
sun is about 4.2 light years away.) Use type double (as in Listing 2.4) and this con-
version factor:

1 light year = 63,240 astronomical units

Write a program that asks the user to enter an hour value and a minute value. The
main () function should then pass these two values to a type void function that dis-
plays the two values in the format shown in the following sample run:

Enter the number of hours: 9

Enter the number of minutes: 28

Time: 9:28

63

This page intentionally left blank

3

Dealing with Data

In this chapter you’ll learn about the following:

= Rules for naming C++ variables

= C++% built-in integer types: unsigned long, long, unsigned int, int,unsigned
short, short, char, unsigned char, signed char, bool

s C++11% additions: unsigned long long and long long

= The climits file, which represents system limits for various integer types

= Numeric literals (constants) of various integer types

= Using the const qualifier to create symbolic constants

= C++’% built-in floating-point types: £loat, double, and long double

= The cfloat file, which represents system limits for various floating-point types
= Numeric literals of various floating-point types

= C++% arithmetic operators

= Automatic type conversions

= Forced type conversions (type casts)

The essence of object-oriented programming (OOP) is designing and extending your
own data types. Designing your own data types represents an effort to make a type match
the data. If you do this properly, you’ll find it much simpler to work with the data later.
But before you can create your own types, you must know and understand the types that
are built in to C++ because those types will be your building blocks.

The built-in C++ types come in two groups: fundamental types and compound types.
In this chapter you’ll meet the fundamental types, which represent integers and floating-
point numbers. That might sound like just two types; however, C++ recognizes that no
one integer type and no one floating-point type match all programming requirements, so
it offers several variants on these two data themes. Chapter 4, “Compound Types,” follows
up by covering several types that are built on the basic types; these additional compound
types include arrays, strings, pointers, and structures.

66

Chapter 3 Dealing with Data

Of course, a program also needs a means to identify stored data. In this chapter you’ll
examine one method for doing so—using variables. Then you’ll look at how to do arith-
metic in C++. Finally, you’ll see how C++ converts values from one type to another.

Simple Variables

Programs typically need to store information—perhaps the current price of Google stock,
the average humidity in New York City in August, the most common letter in the U.S.
Constitution and its relative frequency, or the number of available Elvis impersonators. To
store an item of information in a computer, the program must keep track of three funda-
mental properties:

= Where the information is stored
= What value is kept there

= What kind of information is stored

The strategy the examples in this book have used so far is to declare a variable. The
type used in the declaration describes the kind of information, and the variable name
represents the value symbolically. For example, suppose Chief Lab Assistant Igor uses the
following statements:

int braincount;
braincount = 5;

These statements tell the program that it is storing an integer and that the name
braincount represents the integer’s value, 5 in this case. In essence, the program locates a
chunk of memory large enough to hold an integer, notes the location, and copies the
value 5 into the location.You then can use braincount later in your program to access
that memory location. These statements don'’t tell you (or Igor) where in memory the
value is stored, but the program does keep track of that information, too. Indeed, you can
use the & operator to retrieve braincount’s address in memory.You’ll learn about that
operator in the next chapter, when you investigate a second strategy for identifying
data—using pointers.

Names for Variables

C++ encourages you to use meaningful names for variables. If a variable represents the
cost of a trip, you should call it cost_of_trip or costOfTrip, not just x or cot.You do
have to follow a few simple C++ naming rules:

» The only characters you can use in names are alphabetic characters, numeric digits,
and the underscore (_) character.
= The first character in a name cannot be a numeric digit.

= Uppercase characters are considered distinct from lowercase characters.

Simple Variables

= You can’t use a C++ keyword for a name.

= Names beginning with two underscore characters or with an underscore character
followed by an uppercase letter are reserved for use by the implementation—that is,
the compiler and the resources it uses. Names beginning with a single underscore
character are reserved for use as global identifiers by the implementation.

= C++ places no limits on the length of a name, and all characters in a name are sig-
nificant. However, some platforms might have their own length limits.

The next-to-last point is a bit different from the preceding points because using a
name such as __time stop or _Donut doesn’t produce a compiler error; instead, it leads
to undefined behavior. In other words, there’s no telling what the result will be. The rea-
son there is no compiler error is that the names are not illegal but rather are reserved for
the implementation to use.The bit about global names refers to where the names are
declared; Chapter 4 touches on that topic.

The final point differentiates C++ from ANSI C (C99), which guarantees only that
the first 63 characters in a name are significant. (In ANSI C, two names that have the
same first 63 characters are considered identical, even if the 64th characters differ.)

Here are some valid and invalid C++ names:

int poodle; // valid

int Poodle; // valid and distinct from poodle

int POODLE; // valid and even more distinct

Int terrier; // invalid -- has to be int, not Int

int my stars3 // valid

int Mystars3; // valid but reserved -- starts with underscore

int 4ever; // invalid because starts with a digit

int double; // invalid -- double is a C++ keyword

int begin; // valid -- begin is a Pascal keyword

int _ fools; // valid but reserved -- starts with two underscores

int the very best variable i can be version 112; // valid
int honky-tonk; // invalid -- no hyphens allowed

If you want to form a name from two or more words, the usual practice is to separate
the words with an underscore character, as in my_onions, or to capitalize the initial char-
acter of each word after the first, as in myEyeTooth. (C veterans tend to use the under-
score method in the C tradition, whereas those raised in the Pascal tradition prefer the
capitalization approach.) Either form makes it easier to see the individual words and to
distinguish between, say, carDrip and cardRip, or boat_sport and boats_port.

Naming Schemes

Schemes for naming variables, like schemes for naming functions, provide fertile ground for
fervid discussion. Indeed, this topic produces some of the most strident disagreements in
programming. Again, as with function names, the C++ compiler doesn’t care about your vari-
able names as long as they satisfy the rules, but a consistent, precise personal naming con-
vention will serve you well.

67

68

Chapter 3 Dealing with Data

As in function naming, capitalization is a key issue in variable naming (see the sidebar
“Naming Conventions” in Chapter 2, “Setting Out to C++”), but many programmers may
insert an additional level of information in a variable name—a prefix that describes the vari-
able’s type or contents. For instance, the integer myWeight might be named nMyWeight;
here, the n prefix is used to represent an integer value, which is useful when you are reading
code and the definition of the variable isn't immediately at hand. Alternatively, this variable
might be named intMyWeight, which is more precise and legible, although it does include a
couple extra letters (anathema to many programmers). Other prefixes are commonly used in
like fashion: str or sz might be used to represent a null-terminated string of characters, b
might represent a Boolean value, p a pointer, ¢ a single character.

As you progress into the world of C++, you will find many examples of the prefix naming style
(including the handsome m_1lpctstr prefix—a class member value that contains a long
pointer to a constant, null-terminated string of characters), as well as other, more bizarre
and possibly counterintuitive styles that you may or may not adopt as your own. As in all the
stylistic, subjective parts of C++, consistency and precision are best. You should use vari-
able names to fit your own needs, preferences, and personal style. (Or, if required, choose
names that fit the needs, preferences, and personal style of your employer.)

Integer Types

Integers are numbers with no fractional part, such as 2, 98, -5286, and 0. There are lots of
integers, assuming that you consider an infinite number to be a lot, so no finite amount of
computer memory can represent all possible integers. Thus, a language can represent only
a subset of all integers. Some languages offer just one integer type (one type fits alll), but
C++ provides several choices. This gives you the option of choosing the integer type that
best meets a program’s particular requirements. This concern with matching type to data
presages the designed data types of OOP.

The various C++ integer types differ in the amount of memory they use to hold an
integer. A larger block of memory can represent a larger range in integer values. Also
some types (signed types) can represent both positive and negative values, whereas others
(unsigned types) can’t represent negative values. The usual term for describing the amount
of memory used for an integer is width. The more memory a value uses, the wider it is.
C++’s basic integer types, in order of increasing width, are char, short, int, long, and,
with C++11, long long. Each comes in both signed and unsigned versions. That gives
you a choice of ten different integer types! Let’s look at these integer types in more detail.
Because the char type has some special properties (it’s most often used to represent char-
acters instead of numbers), this chapter covers the other types first.

The short, int, long, and long long Integer Types

Computer memory consists of units called bits. (See the “Bits and Bytes” sidebar later in
this chapter.) By using different numbers of bits to store values, the C++ types short,
int, long, and long long can represent up to four different integer widths. It would be
convenient if each type were always some particular width for all systems—for example, if
short were always 16 bits, int were always 32 bits, and so on. But life is not that simple.

Simple Variables

No one choice is suitable for all computer designs. C++ offers a flexible standard with
some guaranteed minimum sizes, which it takes from C. Here’s what you get:

= A short integer is at least 16 bits wide.
= An int integer is at least as big as short.
= A long integer is at least 32 bits wide and at least as big as int.

= A long long integer is at least 64 bits wide and at least as big as long.

Bits and Bytes

The fundamental unit of computer memory is the bit. Think of a bit as an electronic switch
that you can set to either off or on. Off represents the value O, and on represents the value
1. An 8-bit chunk of memory can be set to 256 different combinations. The number 256
comes from the fact that each bit has two possible settings, making the total number of
combinations for 8 bits 2 X2 x2x2x 2 x 2 x 2 x 2, or 256. Thus, an 8-bit unit can repre-
sent, say, the values O through 255 or the values —128 through 127. Each additional bit
doubles the number of combinations. This means you can set a 16-bit unit to 65,536 differ-
ent values, a 32-bit unit to 4,294,672,296 different values, and a 64-bit unit to
18,446,744,073,709,551,616 different values. As a point of comparison, unsigned long
can’t hold the Earth’s current population or the number of stars in our galaxy, but 1ong
long can.

A byte usually means an 8-bit unit of memory. Byte in this sense is the unit of measurement
that describes the amount of memory in a computer, with a kilobyte equal to 1,024 bytes
and a megabyte equal to 1,024 kilobytes. However, C++ defines byte differently. The C++
byte consists of at least enough adjacent bits to accommodate the basic character set for
the implementation. That is, the number of possible values must equal or exceed the num-
ber of distinct characters. In the United States, the basic character sets are usually the
ASCIl and EBCDIC sets, each of which can be accommodated by 8 bits, so the C++ byte is
typically 8 bits on systems using those character sets. However, international programming
can require much larger character sets, such as Unicode, so some implementations may
use a 16-bit byte or even a 32-bit byte. Some use the term octet to denote an 8-bit byte.

Many systems currently use the minimum guarantee, making short 16 bits and long
32 bits. This still leaves several choices open for int. It could be 16, 24, or 32 bits in width
and meet the standard. It could even be 64 bits, providing that 1ong and long long are at
least that wide. Typically, int is 16 bits (the same as short) for older IBM PC implemen-
tations and 32 bits (the same as long) for Windows XP, Windows Vista, Windows 7, Macin-
tosh OS X,VAX, and many other minicomputer implementations. Some implementations
give you a choice of how to handle int. (What does your implementation use? The next
example shows you how to determine the limits for your system without your having to
open a manual.) The differences between implementations for type widths can cause
problems when you move a C++ program from one environment to another, including
using a different compiler on the same system. But a little care, as discussed later in this
chapter, can minimize those problems.

69

70

Chapter 3 Dealing with Data

You use these type names to declare variables just as you would use int:

short score; // creates a type short integer variable
int temperature; // creates a type int integer variable
long position; // creates a type long integer variable

Actually, short is short for short int and long is short for long int, but hardly any-
one uses the longer forms.

The four types—int, short, long, and long long—are signed types, meaning each
splits its range approximately equally between positive and negative values. For example, a
16-bit int might run from —32,768 to +32,767.

If you want to know how your system’s integers size up, you can use C++ tools to
investigate type sizes with a program. First, the sizeof operator returns the size, in bytes,
of a type or a variable. (An operator is a built-in language element that operates on one or
more items to produce a value. For example, the addition operator, represented by +, adds
two values.) Recall that the meaning of byfe is implementation dependent, so a 2-byte int
could be 16 bits on one system and 32 bits on another. Second, the climits header file
(or, for older implementations, the 1imits.h header file) contains information about inte-
ger type limits. In particular, it defines symbolic names to represent different limits. For
example, it defines INT MaX as the largest possible int value and CHAR_BIT as the number
of bits in a byte. Listing 3.1 demonstrates how to use these facilities. The program also
illustrates initialization, which is the use of a declaration statement to assign a value to a
variable.

Listing 3.1 limits.cpp

// limits.cpp -- some integer limits
#include <iostreams>
#include <climitss> // use limits.h for older systems
int main()
{
using namespace std;
int n_int = INT MAX; // initialize n int to max int value
short n_short = SHRT_MAX; // symbols defined in climits file
long n_long = LONG_MAX;
long long n_llong = LLONG MAX;

// sizeof operator yields size of type or of variable

cout << "int is " << sizeof (int) << " bytes." << endl;

cout << "short is " << sizeof n short << " bytes." << endl;
cout << "long is " << sizeof n_long << " bytes." << endl;

cout << "long long is " << sizeof n_llong << " bytes." << endl;
cout << endl;

cout << "Maximum values:" << endl;
cout << "int: " << n_int << endl;
cout << "short: " << n_short << endl;

Simple Variables

cout << "long: " << n_long << endl;
<< n_llong << endl << endl;

cout << "long long:

cout << "Minimum int value = " << INT MIN << endl;
cout << "Bits per byte = " << CHAR_BIT << endl;
return 0;
}
Note

If your system doesn’t support the long long type, you should remove the lines using
that type.

Here is sample output from the program in Listing 3.1:

int is 4 bytes.

short is 2 bytes.
long is 4 bytes.

long long is 8 bytes.

Maximum values:

int: 2147483647

short: 32767

long: 2147483647

long long: 9223372036854775807

Minimum int value = -2147483648
Bits per byte = 8

These particular values came from a system running 64-bit Windows 7.
The following sections look at the chief programming features for this program.

The sizeof Operator and the climits Header File

The sizeof operator reports that int is 4 bytes on the base system, which uses an 8-bit
byte.You can apply the sizeof operator to a type name or to a variable name. When you
use the sizeof operator with a type name, such as int, you enclose the name in paren-
theses. But when you use the operator with the name of the variable, such as n_short,
parentheses are optional:

cout << "int is " << sizeof (int) << " bytes.\n";

cout << "short is " << sizeof n_short << " bytes.\n";

The climits header file defines symbolic constants (see the sidebar, “Symbolic Con-
stants the Preprocessor Way,” later in this chapter) to represent type limits. As mentioned
previously, INT_MAX represents the largest value type int can hold; this turned out to be
2,147,483,647 for our Windows 7 system. The compiler manufacturer provides a climits
file that reflects the values appropriate to that compiler. For example, the climits file for
some older systems that used a 16-bit int, defines INT MAX to represent 32,767.Table 3.1

71

72

Chapter 3 Dealing with Data

summarizes the symbolic constants defined in the climits file; some pertain to types you
have not yet learned.

Table 3.1 Symbolic Constants from climits

Symbolic Constant Represents

CHAR_BIT Number of bits in a char
CHAR_MAX Maximum char value

CHAR MIN Minimum char value

SCHAR MAX Maximum signed char value
SCHAR_MIN Minimum signed char value
UCHAR MAX Maximum unsigned char value
SHRT MAX Maximum short value

SHRT MIN Minimum short value

USHRT MAX Maximum unsigned short value
INT MAX Maximum int value

INT MIN Minimum int value

UINT MAX Maximum unsigned int value
LONG_MAX Maximum long value

LONG_MIN Minimum long value

ULONG_MAX Maximum unsigned long value
LLONG_MAX Maximum long long value
LLONG_MIN Minimum long long value
ULLONG_ MAX Maximum unsigned long long value

Symbolic Constants the Preprocessor Way
The climits file contains lines similar to the following:

#define INT MAX 32767

Recall that the C++ compilation process first passes the source code through a preproces-
sor. Here #define, like #include, is a preprocessor directive. What this particular directive
tells the preprocessor is this: Look through the program for instances of INT MAX and
replace each occurrence with 32767. So the #define directive works like a global search-
and-replace command in a text editor or word processor. The altered program is compiled
after these replacements occur. The preprocessor looks for independent tokens (separate
words) and skips embedded words. That is, the preprocessor doesn’t replace PINT MAXIM

Simple Variables

with P327671IM. You can use #define to define your own symbolic constants, too (see
Listing 3.2). However, the #define directive is a C relic. C++ has a better way of creating
symbolic constants (using the const keyword, discussed in a later section), so you won’t be
using #define much. But some header files, particularly those designed to be used with
both C and C++, do use it.

Initialization
Initialization combines assignment with declaration. For example, the following statement

declares the n_int variable and sets it to the largest possible type int value:

int n_int = INT MAX;

You can also use literal constants, such as 255, to initialize values.You can initialize a
variable to another variable, provided that the other variable has been defined first. You
can even initialize a variable to an expression, provided that all the values in the expression
are known when program execution reaches the declaration:

int uncles = 5; // initialize uncles to 5
int aunts = uncles; // initialize aunts to 5
int chairs = aunts + uncles + 4; // initialize chairs to 14

Moving the uncles declaration to the end of this list of statements would invalidate
the other two initializations because then the value of uncles wouldn’t be known at the
time the program tries to initialize the other variables.

The initialization syntax shown previously comes from C; C++ has an initialization
syntax that is not shared with C:

int owls = 101; // traditional C initialization, sets owls to 101
int wrens(432); // alternative C++ syntax, set wrens to 432
Caution

If you don’t initialize a variable that is defined inside a function, the variable’s value is
indeterminate. That means the value is whatever happened to be sitting at that memory
location prior to the creation of the variable.

If you know what the initial value of a variable should be, initialize it. True, separating
the declaring of a variable from assigning it a value can create momentary suspense:
short year; // what could it be?
year = 1492; // oh

But initializing the variable when you declare it protects you from forgetting to assign
the value later.

73

74

Chapter 3 Dealing with Data

Initialization with C++11
There’s another format for initialization that’s used with arrays and structures but in
C++98 can also be used with single-valued variables:

int hamburgers = {24}; // set hamburgers to 24

Using a braced initializer for a single-valued variable hasn’t been particularly common,
but the C++11 standard is extending it some ways. First, it can be used with or without
the = sign:
int emus{7}; // set emus to 5
int rheas = {12}; // set rheas to 12

Second, the braces can be left empty, in which case the variable is initialized to O:

int rocs = {}; // set rocs to 0
int psychics{}; // set psychics to 0

Third, it provides better protection against type conversion errors, a topic we’ll return
to near the end of this chapter.

Why, you may ask with good reason, does the language need more alternatives? As odd
as it may seem, the reason is to make using C++ easier for the novice. In the past, C++
has used different forms of initialization for difterent types, and the form used to initialize
class variables was different from the form used for ordinary structures—and that, in turn,
was different from the form usually used for simple variables such as we have been using.
C++ added the parentheses form of initialization to make initializing ordinary variables
more like initializing class variables. C++11 makes it possible to use the braces syntax
(with or without the =) with all types—a universal initialization syntax. In the future, texts
may introduce you to initialization using the brace forms and mention the other forms as
historical oddities retained for backward compatibility.

Unsigned Types

Each of the four integer types you just learned about comes in an unsigned variety that
can’t hold negative values. This has the advantage of increasing the largest value the vari-
able can hold. For example, if short represents the range —32,768 to +32,767, the
unsigned version can represent the range 0 to 65,535. Of course, you should use unsigned
types only for quantities that are never negative, such as populations, bean counts, and
happy face manifestations. To create unsigned versions of the basic integer types, you just
use the keyword unsigned to modify the declarations:

unsigned short change; // unsigned short type
unsigned int rovert; // unsigned int type
unsigned quarterback; // also unsigned int
unsigned long gone; // unsigned long type

unsigned long long lang lang; // unsigned long long type

Note that unsigned by itself is short for unsigned int.

Simple Variables

Listing 3.2 illustrates the use of unsigned types. It also shows what might happen if
your program tries to go beyond the limits for integer types. Finally, it gives you one last
look at the preprocessor #define statement.

Listing 3.2 exceed.cpp

// exceed.cpp -- exceeding some integer limits

#include <iostream>

#define ZERO 0 // makes ZERO symbol for 0 value

#include <climits> // defines INT MAX as largest int value

int main()

{
using namespace std;
short sam = SHRT MAX; // initialize a variable to max value
unsigned short sue = sam;// okay if variable sam already defined

cout << "Sam has " << sam << " dollars and Sue has " << sue;
cout << " dollars deposited." << endl
<< "Add $1 to each account." << endl << "Now ";
sam = sam + 1;
sue = sue + 1;

AN
AN

cout << "Sam has " << sam << " dollars and Sue has sue;
cout << " dollars deposited.\nPoor Sam!" << endl;

sam = ZERO;

sue = ZERO;

cout << "Sam has " << sam << " dollars and Sue has " << sue;

cout << " dollars deposited." << endl;

cout << "Take $1 from each account." << endl << "Now ";
sam = sam - 1;

sue = sue - 1;

cout << "Sam has " << sam << " dollars and Sue has " << sue;
cout << " dollars deposited." << endl << "Lucky Sue!" << endl;
return 0;

Here’s the output from the program in Listing 3.2:

Sam has 32767 dollars and Sue has 32767 dollars deposited.

Add $1 to each account.

Now Sam has -32768 dollars and Sue has 32768 dollars deposited.
Poor Sam!

Sam has 0 dollars and Sue has 0 dollars deposited.

Take $1 from each account.

Now Sam has -1 dollars and Sue has 65535 dollars deposited.
Lucky Sue!

75

76

Chapter 3 Dealing with Data

The program sets a short variable (sam) and an unsigned short variable (sue) to the
largest short value, which is 32,767 on our system. Then it adds 1 to each value. This
causes no problems for sue because the new value is still much less than the maximum
value for an unsigned integer. But sam goes from 32,767 to —32,768! Similarly, subtracting
1 from O creates no problems for sam, but it makes the unsigned variable sue go from 0 to
65,535. As you can see, these integers behave much like an odometer. If you go past the
limit, the values just start over at the other end of the range (see Figure 3.1). C++ guaran-
tees that unsigned types behave in this fashion. However, C++ doesn’t guarantee that
signed integer types can exceed their limits (overflow and underflow) without complaint,
but that is the most common behavior on current implementations.

reset point

-327 +32767
3 68\|/3 6

signed

g — +16384
integer

| / increasing
TN size
-1 A

-16384 —

+327 +32767
3 GS\I/S 6

unsigned

+49152 — . —+16364
integer
| /increasing
+65535 /0\+1 stz

!

reset point

Figure 3.1 Typical overflow behavior for integers.

Choosing an Integer Type
With the richness of C++ integer types, which should you use? Generally, int is set to
the most “natural” integer size for the target computer. Natural size refers to the integer
form that the computer handles most efficiently. If there is no compelling reason to
choose another type, you should use int.

Now look at reasons why you might use another type. If a variable represents some-
thing that is never negative, such as the number of words in a document, you can use an
unsigned type; that way the variable can represent higher values.

Simple Variables 77

If you know that the variable might have to represent integer values too great for a 16-
bit integer, you should use long.This is true even if int is 32 bits on your system. That
way, if you transfer your program to a system with a 16-bit int, your program won’t
embarrass you by suddenly failing to work properly (see Figure 3.2). And if a mere two
billion is inadequate for your needs, you can move up to long long.

/] myprofit.cpp /] myprofit.cpp

int receipts = 560334; int receipts = 560334;
long also = 560334; long also = 560334;

cout << receipts << "\n"; cout << receipts << "\n";
cout << also << "\n"; cout << also << "\n";

(? ?)

560334 -29490
560334 560334
Type int worked on this computer. Type int failed on this computer.

Figure 3.2 For portability, use 1ong for big integers.

Using short can conserve memory if short is smaller than int. Most typically, this is
important only if you have a large array of integers. (An array is a data structure that stores
several values of the same type sequentially in memory.) If it is important to conserve
space, you should use short instead of int, even if the two are the same size. Suppose, for
example, that you move your program from a 16-bit int system to a 32-bit int system.
That doubles the amount of memory needed to hold an int array, but it doesn’t affect the
requirements for a short array. Remember, a bit saved is a bit earned.

If you need only a single byte, you can use char. We’ll examine that possibility soon.

78

Chapter 3 Dealing with Data

Integer Literals

An integer literal, or constant, is one you write out explicitly, such as 212 or 1776. C++,
like C, lets you write integers in three different number bases: base 10 (the public
favorite), base 8 (the old Unix favorite), and base 16 (the hardware hacker’s favorite).
Appendix A, “Number Bases,” describes these bases; here we’ll look at the C++ represen-
tations. C++ uses the first digit or two to identify the base of a number constant. If the
first digit is in the range 1-9, the number is base 10 (decimal); thus 93 is base 10. If the
first digit is O and the second digit is in the range 1-7, the number is base 8 (octal); thus
042 is octal and equal to 34 decimal. If the first two characters are Ox or 0X, the number
is base 16 (hexadecimal); thus 0x42 is hex and equal to 66 decimal. For hexadecimal val-
ues, the characters a—f and A—F represent the hexadecimal digits corresponding to the val-
ues 10-15. OxF is 15 and 0xAS5 is 165 (10 sixteens plus 5 ones). Listing 3.3 is tailor-made
to show the three bases.

Listing 3.3 hexoctl.cpp

// hexoctl.cpp -- shows hex and octal literals
#include <iostream>
int main()

{

using namespace std;

int chest = 42; // decimal integer literal
int waist = 0x42; // hexadecimal integer literal
int inseam = 042; // octal integer literal

cout << "Monsieur cuts a striking figure!\n";

cout << "chest = " << chest << " (42 in decimal)\n";
cout << "waist = " << waist << " (0x42 in hex)\n";
cout << "inseam = " << inseam << " (042 in octal)\n";
return 0;

By default, cout displays integers in decimal form, regardless of how they are written
in a program, as the following output shows:
Monsieur cuts a striking figure!
chest = 42 (42 in decimal)
waist = 66 (0x42 in hex)
inseam = 34 (042 in octal)

Keep in mind that these notations are merely notational conveniences. For example, if
you belong to a vintage PC club and read that the CGA video memory segment is BOOO
in hexadecimal, you don’t have to convert the value to base 10 45,056 before using it in
your program. Instead, you can simply use 0xB000. But whether you write the value ten
as 10,012, or OxA, it’s stored the same way in the computer—as a binary (base 2) value.

Simple Variables

By the way, if you want to display a value in hexadecimal or octal form, you can use
some special features of cout. Recall that the iostream header file provides the endl
manipulator to give cout the message to start a new line. Similarly, it provides the dec,
hex, and oct manipulators to give cout the messages to display integers in decimal, hexa-
decimal, and octal formats, respectively. Listing 3.4 uses hex and oct to display the decimal
value 42 in three formats. (Decimal is the default format, and each format stays in effect
until you change it.)

Listing 3.4 hexoct2.cpp

// hexoct2.cpp -- display values in hex and octal
#include <iostream>
using namespace std;
int main()
{
using namespace std;
int chest = 42;
int waist = 42;
int inseam = 42;

cout << "Monsieur cuts a striking figure!" << endl;

cout << "chest = " << chest << " (decimal for 42)" << endl;
cout << hex; // manipulator for changing number base

cout << "waist = " << waist << " (hexadecimal for 42)" << endl;
cout << oct; // manipulator for changing number base

cout << "inseam = " << inseam << " (octal for 42)" << endl;

return 0;

Here’s the program output for Listing 3.4:
Monsieur cuts a striking figure!
chest = 42 (decimal for 42)

waist = 2a (hexadecimal for 42)
inseam = 52 (octal for 42)

Note that code like the following doesn’t display anything onscreen:

cout << hex;

Instead, it changes the way cout displays integers. Thus, the manipulator hex is really a
message to cout that tells it how to behave. Also note that because the identifier hex is
part of the std namespace and the program uses that namespace, this program can’t use
hex as the name of a variable. However, if you omitted the using directive and instead
used std: :cout, std: :endl, std: :hex, and std: :oct, you could still use plain hex as the
name for a variable.

79

80

Chapter 3 Dealing with Data

How C++ Decides What Type a Constant Is

A program’s declarations tell the C++ compiler the type of a particular integer variable.
But what about constants? That is, suppose you represent a number with a constant in a
program:

cout << "Year = " << 1492 << "\n";

Does the program store 1492 as an int, a long, or some other integer type? The
answer is that C++ stores integer constants as type int unless there is a reason to do oth-
erwise. Two such reasons are if you use a special suffix to indicate a particular type or if a
value is too large to be an int.

First, look at the suffixes. These are letters placed at the end of a numeric constant to
indicate the type.An 1 or L suffix on an integer means the integer is a type long constant,
a u or U suffix indicates an unsigned int constant, and ul (in any combination of orders
and uppercase and lowercase) indicates a type unsigned long constant. (Because a lower-
case 1 can look much like the digit 1, you should use the uppercase L for suffixes.) For
example, on a system using a 16-bit int and a 32-bit long, the number 22022 is stored in
16 bits as an int, and the number 22022L is stored in 32 bits as a long. Similarly, 22022LU
and 22022UL are unsigned long. C++11 provides the 11 and LL suffixes for type long
long,and‘ull,Ull,uLL,and ULL ﬁnfunsigned long long.

Next, look at size. C++ has slightly different rules for decimal integers than it has for
hexadecimal and octal integers. (Here decimal means base 10, just as hexadecimal means
base 16; the term decimal does not necessarily imply a decimal point.) A decimal integer
without a suffix is represented by the smallest of the following types that can hold it: int,
long, or long long. On a computer system using a 16-bit int and a 32-bit long, 20000 is
represented as type int, 40000 is represented as long, and 3000000000 is represented as
long long.A hexadecimal or octal integer without a suffix is represented by the smallest
of the following types that can hold it: int, unsigned int, long, unsigned long, long
long, or unsigned long long.The same computer system that represents 40000 as long
represents the hexadecimal equivalent 0x9C40 as an unsigned int.That’s because hexa-
decimal 1s frequently used to express memory addresses, which intrinsically are unsigned.
So unsigned int is more appropriate than long for a 16-bit address.

The char Type: Characters and Small Integers

It’s time to turn to the final integer type: char.As you probably suspect from its name, the
char type is designed to store characters, such as letters and numeric digits. Now, whereas
storing numbers is no big deal for computers, storing letters is another matter. Program-
ming languages take the easy way out by using number codes for letters. Thus, the char
type is another integer type. It’s guaranteed to be large enough to represent the entire
range of basic symbols—all the letters, digits, punctuation, and the like—for the target
computer system. In practice, many systems support fewer than 128 kinds of characters, so
a single byte can represent the whole range. Therefore, although char is most often used to
handle characters, you can also use it as an integer type that is typically smaller than short.

Simple Variables

The most common symbol set in the United States is the ASCII character set,
described in Appendix C,“The ASCII Character Set.” A numeric code (the ASCII code)
represents each character in the set. For example, 65 is the code for the character A, and
77 is the code for the character M. For convenience, this book assumes ASCII code in its
examples. However, a C++ implementation uses whatever code is native to its host sys-
tem—for example, EBCDIC (pronounced “eb-se-dik”) on an IBM mainframe. Neither
ASCII nor EBCDIC serve international needs that well, and C++ supports a wide-char-
acter type that can hold a larger range of values, such as are used by the international Uni-
code character set.You’ll learn about this wechar_t type later in this chapter.

Try the char type in Listing 3.5.

Listing 3.5 chartype.cpp

// chartype.cpp -- the char type
#include <iostream>
int main()
{
using namespace std;
char ch; // declare a char variable

cout << "Enter a character: " << endl;

cin >> ch;

cout << "Hola! ";

cout << "Thank you for the " << ch << " character." << endl;
return 0;

Here’s the output from the program in Listing 3.5:

Enter a character:
M
Hola! Thank you for the M character.

The interesting thing is that you type an M, not the corresponding character code, 77.
Also the program prints an M, not 77.Yet if you peer into memory, you find that 77 is the
value stored in the ch variable. The magic, such as it is, lies not in the char type but in cin
and cout.These worthy facilities make conversions on your behalf. On input, cin con-
verts the keystroke input M to the value 77. On output, cout converts the value 77 to the
displayed character M; cin and cout are guided by the type of variable. If you place the
same value 77 into an int variable, cout displays it as 77. (That is, cout displays two 7
characters.) Listing 3.6 illustrates this point. It also shows how to write a character literal
in C++: Enclose the character within two single quotation marks, as in 'M'. (Note that
the example doesn’t use double quotation marks. C++ uses single quotation marks for a
character and double quotation marks for a string. The cout object can handle either, but,
as Chapter 4 discusses, the two are quite different from one another.) Finally, the program
introduces a cout feature, the cout .put () function, which displays a single character.

81

82

Chapter 3 Dealing with Data

Listing 3.6

morechar.cpp

// morechar.

cpp -- the char

#include <iostreams>

int main()

{

using namespace std;

char ch =

int 1 =
cout <<

cout <<
ch = ch
i = ch;

cout <<

type and int type contrasted

™M'; // assign ASCII code for M to ch
ch; // store same code in an int
"The ASCII code for " << ch << " is " << 1 << endl;
"Add one to the character code:" << endl;
+ 1; // change character code in ch
// save new character code in i
"The ASCII code for " << ch << " is " << 1 << endl;

// using the cout.put() member function to display a char

cout << "Displaying char ch using cout.put(ch): ";

cout.put (ch) ;

// using cout.put() to display a char constant
cout.put('!"');

cout << endl << "Done" << endl;

return 0;

Here is the output from the program in Listing 3.6:

The ASCII code for M is 77
Add one to the character code:
The ASCII code for N is 78
Displaying char ch using cout.put(ch): N!

Done

Program Notes

In the program in Listing 3.6, the notation 'M' represents the numeric code for the M
character, so initializing the char variable ch to 'M' sets ch to the value 77.The program
then assigns the identical value to the int variable i, so both ch and i have the value 77.
Next, cout displays ch as M and 1 as 77. As previously stated, a value’s type guides cout as
it chooses how to display that value—just another example of smart objects.

Because ch is really an integer, you can apply integer operations to it, such as adding 1.
This changes the value of ch to 78.The program then resets i to the new value. (Equiva-
lently, you can simply add 1 to i.) Again, cout displays the char version of that value as a

character and the int version as a number.

Simple Variables

The fact that C++ represents characters as integers is a genuine convenience that
makes it easy to manipulate character values.You don’t have to use awkward conversion
functions to convert characters to ASCII and back.

Even digits entered via the keyboard are read as characters. Consider the following
sequence:

char ch;

cin >> ch;

If you type 5 and Enter, this code reads the 5 character and stores the character code
for the 5 character (53 in ASCII) in ch. Now consider this code:
int n;

cin >> n;

The same input results in the program reading the 5 character and running a routine
converting the character to the corresponding numeric value of 5, which gets stored in n.
Finally, the program uses the cout .put () function to display both c and a character

constant.

A Member Function: cout.put ()
Just what is cout .put (), and why does it have a period in its name? The cout.put ()
function is your first example of an important C++ OOP concept, the member function.
Remember that a class defines how to represent data and how to manipulate it. A member
function belongs to a class and describes a method for manipulating class data. The
ostream class, for example, has a put () member function that is designed to output char-
acters.You can use a member function only with a particular object of that class, such as
the cout object, in this case. To use a class member function with an object such as cout,
you use a period to combine the object name (cout) with the function name (put ()).
The period is called the membership operator. The notation cout .put () means to use the
class member function put () with the class object cout.You’ll learn about this in greater
detail when you reach classes in Chapter 10, “Objects and Classes.” Now the only classes
you have are the istream and ostream classes, and you can experiment with their mem-
ber functions to get more comfortable with the concept.

The cout.put () member function provides an alternative to using the << operator to
display a character. At this point you might wonder why there is any need for
cout .put (). Much of the answer is historical. Before Release 2.0 of C++, cout would
display character variables as characters but display character constants, such as 'M' and 'N',
as numbers. The problem was that earlier versions of C++, like C, stored character con-
stants as type int.That is, the code 77 for 'M' would be stored in a 16-bit or 32-bit unit.
Meanwhile, char variables typically occupied 8 bits. A statement like the following copied
8 bits (the important 8 bits) from the constant 'M' to the variable ch:

char ch = 'M';

83

84

Chapter 3 Dealing with Data

Unfortunately, this meant that, to cout, 'M' and ch looked quite different from one
another, even though both held the same value. So a statement like the following would
print the ASCII code for the $ character rather than simply display $:

cout << 'S$';

But the following would print the character, as desired:

cout.put('s');

Now, after Release 2.0, C++ stores single-character constants as type char, not type
int.Therefore, cout now correctly handles character constants.

The cin object has a couple different ways of reading characters from input.You can
explore these by using a program that uses a loop to read several characters, so we’ll return
to this topic when we cover loops in Chapter 5,“Loops and Relational Expressions.”

char Literals

You have several options for writing character literals in C++.The simplest choice for
ordinary characters, such as letters, punctuation, and digits, is to enclose the character in
single quotation marks. This notation stands for the numeric code for the character. For
example, an ASCII system has the following correspondences:

= A is 65, the ASCII code for a.

= 'a' is 97, the ASCII code for a.

= 5 is 53, the ASCII code for the digit s.

= ' ' is 32, the ASCII code for the space character.

= 115 33, the ASCII code for the exclamation point.

Using this notation is better than using the numeric codes explicitly. It’s clearer, and it
doesn’t assume a particular code. If a system uses EBCDIC, then 65 is not the code for a,
but 'a" still represents the character.

There are some characters that you can’t enter into a program directly from the key-
board. For example, you can’t make the newline character part of a string by pressing the
Enter key; instead, the program editor interprets that keystroke as a request for it to start a
new line in your source code file. Other characters have difficulties because the C++ lan-
guage imbues them with special significance. For example, the double quotation mark
character delimits string literals, so you can’t just stick one in the middle of a string literal.
C++ has special notations, called escape sequences, for several of these characters, as shown
in Table 3.2. For example, \a represents the alert character, which beeps your terminal’s
speaker or rings its bell. The escape sequence \n represents a newline. And \" represents
the double quotation mark as an ordinary character instead of a string delimiter.You can
use these notations in strings or in character constants, as in the following examples:

Simple Variables

Table 3.2 C++ Escape Sequence Codes

Character ASCII C++ ASCII Decimal
Name Symbol Code Code ASCII Hex Code
Newline NL (LF) \n 10 OxA
Horizontal tab HT \t 9 0x9
Vertical tab VT \v 11 OxB
Backspace BS \b 8 0x8
Carriage return CR \r 13 0xD
Alert BEL \a 7 0ox7
Backslash \ A\ 92 0x5C
Question mark ? \? 63 Ox3F
Single quote ’ \! 39 ox27
Double quote " \" 34 0x22
char alarm = '\a';

cout << alarm << "Don't do that again!\a\n";
cout << "Ben \"Buggsie\" Hacker\nwas here!\n";

The last line produces the following output:

Ben "Buggsie" Hacker
was here!

Note that you treat an escape sequence, such as \n, just as a regular character, such as Q.
That is, you enclose it in single quotes to create a character constant and don’t use single
quotes when including it as part of a string.

The escape sequence concept dates back to when people communicated with comput-
ers using the teletype, an electromechanical typewriter-printer, and modern systems don’t
always honor the complete set of escape sequences. For example, some systems remain
silent for the alarm character.

The newline character provides an alternative to endl for inserting new lines into out-
put.You can use the newline character in character constant notation ('\n') or as charac-
ter in a string ("\n"). All three of the following move the screen cursor to the beginning
of the next line:

cout << endl; // using the endl manipulator
cout << '\n'; // using a character constant
cout << "\n"; // using a string

You can embed the newline character in a longer string; this is often more convenient
than using end1l. For example, the following two cout statements produce the same output:

cout << endl << endl << "What next?" << endl << "Enter a number:" << endl;
cout << "\n\nWhat next?\nEnter a number:\n";

85

86

Chapter 3 Dealing with Data

When you’re displaying a number, endl is a bit easier to type than "\n" or '\n', but
when you're displaying a string, ending the string with a newline character requires less
typing:
cout << x << endl; // easier than cout << x << "\n";
cout << "Dr. X.\n"; // easier than cout << "The Dr. X." << endl;

Finally, you can use escape sequences based on the octal or hexadecimal codes for a
character. For example, Ctrl+Z has an ASCII code of 26, which is 032 in octal and Ox1la
in hexadecimal. You can represent this character with either of the following escape
sequences: \032 or \xla.You can make character constants out of these by enclosing
them in single quotes, as in '\032"', and you can use them as parts of a string, as in
"hi\xla there".

Tip
When you have a choice between using a numeric escape sequence or a symbolic escape
sequence, as in \ 0x8 versus \b, use the symbolic code. The numeric representation is tied

to a particular code, such as ASCII, but the symbolic representation works with all codes
and is more readable.

Listing 3.7 demonstrates a few escape sequences. It uses the alert character to get your
attention, the newline character to advance the cursor (one small step for a cursor, one
giant step for cursorkind), and the backspace character to back the cursor one space to the
left. (Houdini once painted a picture of the Hudson River using only escape sequences;
he was, of course, a great escape artist.)

Listing 3.7 bondini.cpp

// bondini.cpp -- using escape sequences
#include <iostream>
int main()

using namespace std;

cout << "\aOperation \"HyperHype\" is now activated!\n";

cout << "Enter your agent code: \b\b\b\b\b\b\b\b";
long code;
cin >> code;
cout << "\aYou entered " << code << "...\n";
cout << "\aCode verified! Proceed with Plan Z3!\n";
return 0;
1
Note

Some systems might behave differently, displaying the \b as a small rectangle rather than
backspacing, for example, or perhaps erasing while backspacing, perhaps ignoring \a.

Simple Variables

When you start the program in Listing 3.7, it puts the following text onscreen:

Operation "HyperHype" is now activated!
Enter your agent code:

After printing the underscore characters, the program uses the backspace character to
back up the cursor to the first underscore.You can then enter your secret code and con-
tinue. Here’s a complete run:

Operation "HyperHype" is now activated!
Enter your agent code:42007007

You entered 42007007...

Code verified! Proceed with Plan Z3!

Universal Character Names

C++ implementations support a basic source character set—that is, the set of characters
you can use to write source code. It consists of the letters (uppercase and lowercase) and
digits found on a standard U.S. keyboard, the symbols, such as { and =, used in the C lan-
guage, and a scattering of other characters, such as the space character. Then there is a
basic execution character set, which includes characters that can be processed during the
execution of a program (for example, characters read from a file or displayed on screen).
This adds a few more characters, such as backspace and alert. The C++ Standard also
allows an implementation to offer extended source character sets and extended execution
character sets. Furthermore, those additional characters that qualify as letters can be used as
part of the name of an identifier. Thus, a2 German implementation might allow you to use
umlauted vowels, and a French implementation might allow accented vowels. C++ has a
mechanism for representing such international characters that is independent of any par-
ticular keyboard: the use of universal character names.

Using universal character names is similar to using escape sequences. A universal char-
acter name begins either with \u or \U.The \u form is followed by 8 hexadecimal digits,
and the \U form by 16 hexadecimal digits. These digits represent the ISO 10646 code
point for the character. (ISO 10646 is an international standard under development that
provides numeric codes for a wide range of characters. See “Unicode and ISO 10646,”
later in this chapter.)

If your implementation supports extended characters, you can use universal character
names in identifiers, as character constants, and in strings. For example, consider the fol-
lowing code:
int k\uOOFérper;
cout << "Let them eat g\uOOE2teau.\n";

The ISO 10646 code point for 6 is 00F6, and the code point for a is 00E2. Thus, this
C++ code would set the variable name to kérper and display the following output:

Let them eat gateau.

87

88

Chapter 3 Dealing with Data

If your system doesn’t support ISO 10646, it might display some other character for a
or perhaps simply display the word guooE2teau.

Actually, from the standpoint of readability, there’s not much point to using \u00Fé as
part of a variable name, but an implementation that included the & character as part of an
extended source character set probably would also allow you to type that character from
the keyboard.

Note that C++ uses the term “universal code name,” not, say, “universal code.” That’s
because a construction such as \uoors should be considered a label meaning “the charac-
ter whose Unicode code point is U-00F6.” A compliant C++ compiler will recognize this
as representing the '&' character, but there is no requirement that internal coding be
00F6. Just as, in principle, the character 'T' can be represented internally by ASCII on
one computer and by a different coding system on another computer, the '\uoore' char-
acter can have different encodings on different systems. Your source code can use the same
universal code name on all systems, and the compiler will then represent it by the appro-
priate internal code used on the particular system.

Unicode and ISO 10646

Unicode provides a solution to the representation of various character sets by providing a
standard numbering system for a great number of characters and symbols, grouping them by
type. For example, the ASCII code is incorporated as a subset of Unicode, so U.S. Latin
characters such as A and Z have the same representation under both systems. But Unicode
also incorporates other Latin characters, such as those used in European languages; char-
acters from other alphabets, including Greek, Cyrillic, Hebrew, Cherokee, Arabic, Thai, and
Bengali; and ideographs, such as those used for Chinese and Japanese. So far Unicode rep-
resents more than 109,000 symbols and more than 90 scripts, and it is still under develop-
ment. If you want to know more, you can check the Unicode Consortium’s website, at www.
unicode.org.

Unicode assigns a number, called a code point, for each of its characters. The typical
notation for Unicode code points looks like this: U-222B. The U identifies this as a Unicode
character, and the 222B is the hexadecimal number for the character—an integral sign, in
this case.

The International Organization for Standardization (ISO) established a working group to
develop ISO 10646, also a standard for coding multilingual text. The ISO 10646 group and
the Unicode group have worked together since 1991 to keep their standards synchronized
with one another.

signed char and unsigned char

Unlike int, char is not signed by default. Nor is it unsigned by default. The choice is left
to the C++ implementation in order to allow the compiler developer to best fit the type
to the hardware properties. If it is vital to you that char has a particular behavior, you can
use signed char or unsigned char explicitly as types:

char fodo; // may be signed, may be unsigned

unsigned char bar; // definitely unsigned

signed char snark; // definitely signed

www.unicode.org
www.unicode.org

Simple Variables

These distinctions are particularly important if you use char as a numeric type. The
unsigned char type typically represents the range 0 to 255, and signed char typically
represents the range —128 to 127. For example, suppose you want to use a char variable to
hold values as large as 200. That works on some systems but fails on others.You can, how-
ever, successfully use unsigned char for that purpose on any system. On the other hand,
if you use a char variable to hold a standard ASCII character, it doesn’t really matter
whether char is signed or unsigned, so you can simply use char.

For When You Need More: wchar t

Programs might have to handle character sets that don't fit within the confines of a single
8-bit byte (for example, the Japanese kanji system). C++ handles this in a couple ways.
First, if a large set of characters is the basic character set for an implementation, a compiler
vendor can define char as a 16-bit byte or larger. Second, an implementation can support
both a small basic character set and a larger extended character set. The usual 8-bit char
can represent the basic character set, and another type, called wchar_t (for wide character
type), can represent the extended character set. The wchar t type is an integer type with
sufficient space to represent the largest extended character set used on the system. This
type has the same size and sign properties as one of the other integer types, which is called
the underlying type. The choice of underlying type depends on the implementation, so it
could be unsigned short on one system and int on another.

The cin and cout family consider input and output as consisting of streams of chars,
so they are not suitable for handling the wchar t type.The iostream header file provides
parallel facilities in the form of wein and weout for handling wehar t streams. Also you
can indicate a wide-character constant or string by preceding it with an L. The following
code stores a wchar_t version of the letter P in the variable bob and displays a wchar_t
version of the word tall:

wchar t bob = L'P'; // a wide-character constant
wcout << L"tall" << endl; // outputting a wide-character string

On a system with a 2-byte wchar_t, this code stores each character in a 2-byte unit of
memory. This book doesn’t use the wide-character type, but you should be aware of it,
particularly if you become involved in international programming or in using Unicode or

ISO 10646.

New C++11 Types: charl6é t and char32 t

As the programming community gained more experience with Unicode, it became clear
that the wchar_t type wasn’t enough. It turns out that encoding characters and strings of
characters on a computer system is more complex than just using the Unicode numeric
values (called code points). In particular, it’s useful, when encoding strings of characters, to
have a type of definite size and signedness. But the sign and size of wchar_t can vary from
one implementation to another. So C++11 introduces the types charis_t, which is
unsigned and 16 bits, and char32_t, which is unsigned and 32 bits. C++11 uses the u
prefix for char16_t character and string constants, as in u'C' and u"be good". Similarly, it

89

90

Chapter 3 Dealing with Data

uses the U prefix for char32_t constants, as in U'R' and U"dirty rat".The charl6_t
type is a natural match for universal character names of the form \u00F6, and the
char32_t type is a natural match for universal character names of the form \u0000222B.
The prefixes u and U are used to indicate character literals of types char16_t and
char32_t, respectively:

charlé_t chl = u'q'; // basic character in 16-bit form
char32_t ch2 = U'\U0000222B'; // universal character name in 32-bit form

Like wechar_t, char16_t and char32_t each have an underlying type, which is one of
the built-in integer types. But the underlying type can be different on one system from
what it is on another.

The bool Type

The ANSI/ISO C++ Standard has added a new type (new to C++, that is), called bool.
It’s named in honor of the English mathematician George Boole, who developed a mathe-
matical representation of the laws of logic. In computing, a Boolean variable is one whose
value can be either true or false. In the past, C++, like C, has not had a Boolean type.
Instead, as you’ll see in greater detail in Chapters 5 and 6, C++ interprets nonzero values
as true and zero values as false. Now, however, you can use the bool type to represent true
and false, and the predefined literals true and false represent those values. That is, you
can make statements like the following:

bool is_ready = true;

The literals true and false can be converted to type int by promotion, with true
converting to 1 and false to 0:
int ans = true; // ans assigned 1

int promise = false; // promise assigned 0

Also any numeric or pointer value can be converted implicitly (that is, without an
explicit type cast) to a bool value. Any nonzero value converts to true, whereas a zero
value converts to false:

bool start = -100; // start assigned true
bool stop = 0; // stop assigned false

After the book introduces if statements (in Chapter 6, “Branching Statements and
Logical Operators”), the bool type will become a common feature in the examples.

The const Qualifier

Now let’s return to the topic of symbolic names for constants. A symbolic name can sug-
gest what the constant represents. Also if the program uses the constant in several places
and you need to change the value, you can just change the single symbol definition. The

The const Qualifier

note about #define statements earlier in this chapter (see the sidebar “Symbolic Constants
the Preprocessor Way”) promises that C++ has a better way to handle symbolic constants.
That way is to use the const keyword to modify a variable declaration and initialization.
Suppose, for example, that you want a symbolic constant for the number of months in a
year. Just enter this line in a program:

const int Months = 12; // Months is symbolic constant for 12

Now you can use Months in a program instead of 12. (A bare 12 in a program might
represent the number of inches in a foot or the number of donuts in a dozen, but the
name Months tells you what the value 12 represents.) After you initialize a constant such as
Months, its value is set. The compiler does not let you subsequently change the value
Months. If you try to, for example, g++ gives an error message that the program used an
assignment of a read-only variable. The keyword const is termed a qualifier because it
qualifies the meaning of a declaration.

A common practice is to capitalize the first character in a name to help remind your-
self that Months is a constant. This is by no means a universal convention, but it helps sepa-
rate the constants from the variables when you read a program. Another convention is to
make all the characters uppercase; this is the usual convention for constants created using
#define.Yet another convention is to begin constant names with the letter k, as in
kmonths. And there are yet other conventions. Many organizations have particular coding
conventions they expect their programmers to follow.

The general form for creating a constant is this:

const type name = value;

Note that you initialize a const in the declaration. The following sequence is no good:

const int toes; // value of toes undefined at this point
toes = 10; // too late!

If you don'’t provide a value when you declare the constant, it ends up with an unspeci-
fied value that you cannot modify.

If your background is in C, you might feel that the #define statement, which is dis-
cussed earlier, already does the job adequately. But const is better. For one thing, it lets
you specify the type explicitly. Second, you can use C++’s scoping rules to limit the defi-
nition to particular functions or files. (Scoping rules describe how widely known a name
is to different modules; you’ll learn about this in more detail in Chapter 9,“Memory
Models and Namespaces.”) Third, you can use const with more elaborate types, such as
arrays and structures, as discussed in Chapter 4.

Tip
If you are coming to C++ from C and you are about to use #define to define a symbolic
constant, use const instead.

ANSI C also uses the const qualifier, which it borrows from C++. If you're familiar
with the ANSI C version, you should be aware that the C++ version is slightly different.

91

92

Chapter 3 Dealing with Data

One difference relates to the scope rules, and Chapter 9 covers that point. The other main
difference is that in C++ (but not in C), you can use a const value to declare the size of
an array. You'll see examples in Chapter 4.

Floating-Point Numbers

Now that you have seen the complete line of C++ integer types, let’s look at the floating-
point types, which compose the second major group of fundamental C++ types. These num-
bers let you represent numbers with fractional parts, such as the gas mileage of an M1 tank
(0.56 MPG).They also provide a much greater range in values. If a number is too large to be
represented as type long—for example, the number of bacterial cells in a human body (esti-
mated to be greater than 100,000,000,000,000)—you can use one of the floating-point types.

With floating-point types, you can represent numbers such as 2.5 and 3.14159 and
122442.32—that 1s, numbers with fractional parts. A computer stores such values in two
parts. One part represents a value, and the other part scales that value up or down. Here’s
an analogy. Consider the two numbers 34.1245 and 34124.5. They’re identical except for
scale.You can represent the first one as 0.341245 (the base value) and 100 (the scaling fac-
tor).You can represent the second as 0.341245 (the same base value) and 100,000 (a bigger
scaling factor). The scaling factor serves to move the decimal point, hence the term
floating-point. C++ uses a similar method to represent floating-point numbers internally,
except it’s based on binary numbers, so the scaling is by factors of 2 instead of by factors
of 10. Fortunately, you don’t have to know much about the internal representation. The
main points are that floating-point numbers let you represent fractional, very large, and
very small values, and they have internal representations much different from those of
integers.

Writing Floating-Point Numbers

C++ has two ways of writing floating-point numbers. The first is to use the standard deci-
mal-point notation you’ve been using much of your life:

12.34 // floating-point
939001.32 // floating-point
0.00023 // floating-point
8.0 // still floating-point

Even if the fractional part is 0, as in 8.0, the decimal point ensures that the number is
represented in floating-point format and not as an integer. (The C++ Standard does allow
for implementations to represent different locales—for example, providing a mechanism
for using the European method of using a comma instead of a period for the decimal
point. However, these choices govern how the numbers can appear in input and output,
not in code.)

The second method for representing floating-point values is called E notation, and it
looks like this: 3.45E6.This means that the value 3.45 is multiplied by 1,000,000; the E6
means 10 to the 6th power, which is 1 followed by 6 zeros. Thus 3.45E6 means

Floating-Point Numbers

3,450,000.The 6 is called an exponent, and the 3.45 is termed the mantissa. Here are more
examples:

2.52e+8 // can use E or e, + is optional
8.33E-4 // exponent can be negative

7E5 // same as 7.0E+05

-18.32el3 // can have + or - sign in front
1.69el2 // 2010 Brazilian public debt in reais
5.98E24 // mass of earth in kilograms

9.11e-31 // mass of an electron in kilograms

As you might have noticed, E notation is most useful for very large and very small
numbers.

E notation guarantees that a number is stored in floating-point format, even if no deci-
mal point is used. Note that you can use either E or e, and the exponent can have a posi-
tive or negative sign (see Figure 3.3). However, you can’t have spaces in the number, so, for
example, 7.2 Eé is invalid.

you can use e or E

optional + or — sign sign can be + or — or omitted

| |
+5.37E+16

i k_\f__)

decimal point no spaces
is optional

Figure 3.3 E notation.

To use a negative exponent means to divide by a power of 10 instead of to multiply by
a power of 10. So 8.33E-4 means 8.33 / 10, or 0.000833. Similarly, the electron mass
9.11e-31 kg means 0.000000000000000000000000000000911 kg. Take your choice.
(Incidentally, note that 911 is the usual emergency telephone number in the United States
and that telephone messages are carried by electrons. Coincidence or scientific conspiracy?
You be the judge.) Note that —8.33E4 means —83300. A sign in front applies to the num-
ber value, and a sign in the exponent applies to the scaling.

Note

The form d.dddE+n means move the decimal point n places to the right, and the form
d.dddE-n means move the decimal point n places to the left. This moveable decimal point
is the origin of the term “floating-point.”

93

94

Chapter 3 Dealing with Data

Floating-Point Types

Like ANSI C, C++ has three floating-point types: £1oat, double, and long double.
These types are described in terms of the number of significant figures they can represent
and the minimum allowable range of exponents. Significant figures are the meaningful digits
in a number. For example, writing the height of Mt. Shasta in California as 14,179 feet
uses five significant figures, for it specifies the height to the nearest foot. But writing the
height of Mt. Shasta as about 14,000 feet tall uses two significant figures, for the result is
rounded to the nearest thousand feet; in this case, the remaining three digits are just place-
holders. The number of significant figures doesn’t depend on the location of the decimal
point. For example, you can write the height as 14.179 thousand feet. Again, this uses five
significant digits because the value is accurate to the fifth digit.

In eftect, the C and C++ requirements for significant digits amount to float being at
least 32 bits, double being at least 48 bits and certainly no smaller than float, and long
double being at least as big as double. All three can be the same size. Typically, however,
float is 32 bits, double is 64 bits, and long double is 80, 96, or 128 bits. Also the range
in exponents for all three types is at least =37 to +37.You can look in the cfloat or
float.h header files to find the limits for your system. (cfloat is the C++ version of the
C float.h file.) Here, for example, are some annotated entries from the float.h file for
Borland C++Builder:

// the following are the minimum number of significant digits

#define DBL_DIG 15 // double
#define FLT DIG 6 // float
#define LDBL_DIG 18 // long double

// the following are the number of bits used to represent the mantissa
#define DBL_MANT DIG 53
#define FLT MANT DIG 24
#define LDBL_MANT DIG 64

// the following are the maximum and minimum exponent values
#define DBL MAX 10 EXP +308

#define FLT MAX 10 EXP +38

#define LDBL _MAX 10 EXP +4932

#define DBL MIN 10 EXP -307
#define FLT MIN 10 EXP -37
#define LDBL_MIN 10 _EXP -4931

Listing 3.8 examines types float and double and how they can differ in the precision
to which they represent numbers (that’s the significant figure aspect). The program pre-
views an ostream method called setf () from Chapter 17, “Input, Output, and Files.”
This particular call forces output to stay in fixed-point notation so that you can better see
the precision. It prevents the program from switching to E notation for large values and
causes the program to display six digits to the right of the decimal. The arguments

Floating-Point Numbers

ios base::fixed and ios base::floatfield are constants provided by including

iostream.

Listing 3.8 £floatnum.cpp

// floatnum.cpp -- floating-point types
#include <iostream>
int main()
{
using namespace std;
cout.setf (ios_base::fixed, ios base::floatfield); // fixed-point
float tub = 10.0 / 3.0; // good to about 6 places
double mint = 10.0 / 3.0; // good to about 15 places
const float million = 1.0e6;

cout << "tub = " << tub;

cout << ", a million tubs = " << million * tub;
cout << ",\nand ten million tubs = ";

cout << 10 * million * tub << endl;

cout << "mint = " << mint << " and a million mints = ";
cout << million * mint << endl;
return 0;

Here is the output from the program in Listing 3.8:

tub = 3.333333, a million tubs = 3333333.250000,
and ten million tubs = 33333332.000000
mint = 3.333333 and a million mints = 3333333.333333

Program Notes

Normally cout drops trailing zeros. For example, it would display 3333333.250000 as
3333333.25.The call to cout.setf () overrides that behavior, at least in new implementa-
tions. The main thing to note in Listing 3.8 is how float has less precision than double.
Both tub and mint are initialized to 10.0 / 3.0.That should evaluate to
3.33333333333333333...(etc.). Because cout prints six figures to the right of the decimal,
you can see that both tub and mint are accurate that far. But after the program multiplies
each number by a million, you see that tub diverges from the proper value after the sev-
enth three. tub is good to seven significant figures. (This system guarantees six significant
figures for float, but that’s the worst-case scenario.) The type double variable, however,
shows 13 threes, so it’s good to at least 13 significant figures. Because the system guaran-
tees 15, this shouldn’t surprise you. Also note that multiplying a million tubs by 10
doesn’t quite result in the correct answer; this again points out the limitations of £loat
precision.

95

96

Chapter 3 Dealing with Data

The ostream class to which cout belongs has class member functions that give you
precise control over how the output is formatted—field widths, places to the right of the
decimal point, decimal form or E form, and so on. Chapter 17 outlines those choices. This
book’s examples keep it simple and usually just use the << operator. Occasionally, this
practice displays more digits than necessary, but that causes only aesthetic harm. If you do
mind, you can skim Chapter 17 to see how to use the formatting methods. Don’t, how-
ever, expect to fully follow the explanations at this point.

Reading Include Files

The include directives found at the top of C++ source files often take on the air of a magical
incantation; novice C++ programmers learn, through reading and experience, which header
files add particular functionalities, and they include them solely to make their programs
work. Don’t rely on the include files only as a source of mystic and arcane knowledge; feel
free to open them up and read them. They are text files, so you can read them easily. All the
files you include in your programs exist on your computer or in a place where your computer
can use them. Find the includes you use and see what they contain. You'll quickly see that
the source and header files you use are an excellent source of knowledge and information—
in some cases, the best documentation available. Later, as you progress into more complex
inclusions and begin to use other, nonstandard libraries in your applications, this habit will
serve you well.

Floating-Point Constants

When you write a floating-point constant in a program, in which floating-point type does
the program store it? By default, floating-point constants such as 8.24 and 2.4E8 are type
double. If you want a constant to be type £loat, you use an £ or F suffix. For type long
double, you use an 1 or L suffix. (Because the lowercase 1 looks a lot like the digit 1, the
uppercase L is a better choice.) Here are some samples:

1.234f // a float constant
2.45E20F // a float constant
2.345324E28 // a double constant
2.2L // a long double constant

Advantages and Disadvantages of Floating-Point Numbers

Floating-point numbers have two advantages over integers. First, they can represent values
between integers. Second, because of the scaling factor, they can represent a much greater
range of values. On the other hand, floating point operations usually are slightly slower
than integer operations, and you can lose precision. Listing 3.9 illustrates the last point.

Listing 3.9 fltadd.cpp

// fltadd.cpp -- precision problems with float
#include <iostream>
int main()

{

C++ Arithmetic Operators

using namespace std;
float a = 2.34E+22f;
float b = a + 1.0f;

cout << "a = " << a << endl;
cout << "b - a = " << b - a << endl;
return 0;

The program in Listing 3.9 takes a number, adds 1, and then subtracts the original
number. That should result in a value of 1. Does it? Here is the output from the program
in Listing 3.9 for one system:

a = 2.34e+022
b-a=0

The problem is that 2.34E+22 represents a number with 23 digits to the left of the
decimal. By adding 1, you are attempting to add 1 to the 23rd digit in that number. But
type float can represent only the first 6 or 7 digits in a number, so trying to change the
23rd digit has no effect on the value.

Classifying Data Types

C++ brings some order to its basic types by classifying them into families. Types signed
char, short, int, and long are termed signed integer types. C++11 adds long long to
that list. The unsigned versions are termed unsigned integer types. The bool, char,
wchar t, signed integer, and unsigned integer types together are termed integral types or
integer types. C++11 adds char16_t and char32_t to that list. The float, double, and
long double types are termed floating-point types. Integer and floating-point types are col-
lectively termed arithmetic types.

C++ Arithmetic Operators

Perhaps you have warm memories of doing arithmetic drills in grade school.You can give
that same pleasure to your computer. C++ uses operators to do arithmetic. It provides
operators for five basic arithmetic calculations: addition, subtraction, multiplication, divi-
sion, and taking the modulus. Each of these operators uses two values (called operands) to
calculate a final answer. Together, the operator and its operands constitute an expression. For
example, consider the following statement:

int wheels = 4 + 2;

The values 4 and 2 are operands, the + symbol is the addition operator,and 4 + 2 is an
expression whose value is 6.

97

98 Chapter 3 Dealing with Data

Here are C++’s five basic arithmetic operators:

= The + operator adds its operands. For example, 4 + 20 evaluates to 24.

= The - operator subtracts the second operand from the first. For example, 12 - 3
evaluates to 9.

= The * operator multiplies its operands. For example, 28 * 4 evaluates to 112.

= The / operator divides its first operand by the second. For example, 1000 / 5 eval-
uates to 200. If both operands are integers, the result is the integer portion of the
quotient. For example, 17 / 3 is 5, with the fractional part discarded.

» The % operator finds the modulus of its first operand with respect to the second.
That is, it produces the remainder of dividing the first by the second. For example,
19 % 6 1is 1 because 6 goes into 19 three times, with a remainder of 1. Both
operands must be integer types; using the % operator with floating-point values
causes a compile-time error. If one of the operands is negative, the sign of the result
satisfies the following rule: (a/b) *b + a%b equals a.

Of course, you can use variables as well as constants for operands. Listing 3.10 does just

that. Because the % operator works only with integers, we’ll leave it for a later example.

Listing 3.10 arith.cpp

// arith.cpp -- some C++ arithmetic

#include <iostream>

int main()

{

using namespace std;
float hats, heads;

cout.setf (ios_base::fixed, ios base::floatfield); // fixed-point
cout << "Enter a number: ";

cin >> hats;

cout << "Enter another number: ";

cin >> heads;

cout << "hats = " << hats << "; heads = " << heads << endl;
cout << "hats + heads = " << hats + heads << endl;

cout << "hats - heads = " << hats - heads << endl;

cout << "hats * heads = " << hats * heads << endl;

cout << "hats / heads = " << hats / heads << endl;

return 0;

As you can see in the following sample output from the program in Listing 3.10, you

can trust C++ to do simple arithmetic:

C++ Arithmetic Operators

Enter a number: 50.25

Enter another number: 11.17

hats = 50.250000; heads = 11.170000
hats + heads = 61.419998

hats - heads = 39.080002

hats * heads = 561.292480

hats / heads = 4.498657

Well, maybe you can’t trust it completely. Adding 11.17 to 50.25 should yield 61.42,
but the output reports 61.419998.This is not an arithmetic problem; it’s a problem with
the limited capacity of type £loat to represent significant figures. Remember, C++ guar-
antees just six significant figures for £loat. If you round 61.419998 to six figures, you get
61.4200, which is the correct value to the guaranteed precision. The moral is that if you
need greater accuracy, you should use double or long double.

Order of Operation: Operator Precedence and Associativity

Can you trust C++ to do complicated arithmetic? Yes, but you must know the rules C++
uses. For example, many expressions involve more than one operator. That can raise ques-
tions about which operator gets applied first. For example, consider this statement:

int flyingpigs = 3 + 4 * 5; // 35 or 23?

The 4 appears to be an operand for both the + and * operators. When more than one
operator can be applied to the same operand, C++ uses precedence rules to decide which
operator is used first. The arithmetic operators follow the usual algebraic precedence, with
multiplication, division, and the taking of the modulus done before addition and subtrac-
tion.Thus3 + 4 * 5means3 + (4 * 5),not (3 + 4) * 5.So the answer is 23, not 35.
Of course, you can use parentheses to enforce your own priorities. Appendix D, “Operator
Precedence,” shows precedence for all the C++ operators. Note that *, /, and % are all in
the same row in Appendix D.That means they have equal precedence. Similarly, addition
and subtraction share a lower precedence.

Sometimes the precedence list is not enough. Consider the following statement:

float logs = 120 / 4 * 5; // 150 or 6?

Once again, 4 is an operand for two operators. But the / and * operators have the same
precedence, so precedence alone doesn’t tell the program whether to first divide 120 by 4
or multiply 4 by 5. Because the first choice leads to a result of 150 and the second to a
result of 6, the choice is an important one. When two operators have the same prece-
dence, C++ looks at whether the operators have a left-to-right associativity or a right-to-
left associativity. Left-to-right associativity means that if two operators acting on the same
operand have the same precedence, you apply the left-hand operator first. For right-to-left
associativity, you apply the right-hand operator first. The associativity information, too, is
in Appendix D. Appendix D shows that multiplication and division associate left-to-right.
That means you use 4 with the leftmost operator first. That is, you divide 120 by 4, get 30
as a result, and then multiply the result by 5 to get 150.

99

100

Chapter 3 Dealing with Data

Note that the precedence and associativity rules come into play only when two opera-
tors share the same operand. Consider the following expression:

int dues = 20 * 5 + 24 * 6;

Operator precedence tells you two things: The program must evaluate 20 * 5 before
doing addition, and the program must evaluate 24 * 6 before doing addition. But neither
precedence nor associativity says which multiplication takes place first.You might think
that associativity says to do the leftmost multiplication first, but in this case, the two *
operators do not share a common operand, so the rules don’t apply. In fact, C++ leaves it
to the implementation to decide which order works best on a system. For this example,
either order gives the same result, but there are circumstances in which the order can
make a difference.You’ll see one in Chapter 5, which discusses the increment operator.

Division Diversions

You have yet to see the rest of the story about the division operator (/). The behavior of
this operator depends on the type of the operands. If both operands are integers, C++
performs integer division. That means any fractional part of the answer is discarded, mak-
ing the result an integer. If one or both operands are floating-point values, the fractional
part is kept, making the result floating-point. Listing 3.11 illustrates how C++ division
works with different types of values. As in Listing 3.10, Listing 3.11 invokes the setf ()
member function to modify how the results are displayed.

Listing 3.11 divide.cpp

// divide.cpp -- integer and floating-point division
#include <iostreams>
int main ()

{
using namespace std;
cout.setf (ios_base::fixed, ios base::floatfield);
cout << "Integer division: 9/5 = " << 9 / 5 << endl;
cout << "Floating-point division: 9.0/5.0 = ";
cout << 9.0 / 5.0 << endl;
cout << "Mixed division: 9.0/5 = " << 9.0 / 5 << endl;
cout << "double constants: 1e7/9.0 = ";
cout << 1.e7 / 9.0 << endl;
cout << "float constants: 1le7f/9.0f = ";
cout << 1.e7f / 9.0f << endl;
return 0;
1

Here is the output from the program in Listing 3.11 for one implementation:

Integer division: 9/5 = 1
Floating-point division: 9.0/5.0 = 1.800000
Mixed division: 9.0/5 = 1.800000

C++ Arithmetic Operators

double constants: 1e7/9.0 = 1111111.111111
float constants: 1e7f/9.0f = 1111111.125000

The first output line shows that dividing the integer 9 by the integer 5 yields the inte-
ger 1. The fractional part of 4 / 5 (or 0.8) is discarded. (You’ll see a practical use for this
kind of division when you learn about the modulus operator, later in this chapter.) The
next two lines show that when at least one of the operands is floating-point, you get a
floating-point answer of 1.8. Actually, when you try to combine mixed types, C++ con-
verts all the concerned types to the same type.You’ll learn about these automatic conver-
sions later in this chapter. The relative precisions of the last two lines show that the result is
type double if both operands are double and that it is £loat if both operands are float.
Remember, floating-point constants are type double by default.

A Glimpse at Operator Overloading

In Listing 3.11, the division operator represents three distinct operations: int division,
float division, and double division. C++ uses the context—in this case the type of
operands—to determine which operator is meant. The process of using the same symbol for
more than one operation is called operator overloading. C++ has a few examples of over-
loading built in to the language. C++ also lets you extend operator overloading to user-
defined classes, so what you see here is a precursor of an important OOP property (see
Figure 3.4).

type int /type int type long /type long
9/ 5 9L / 5L
operator performs operator performs
int division long division
type double /type double type float /type float
9.0 / 5.0 9.0f / 5.0f
operator performs operator performs
double division float division

Figure 3.4 Different divisions.

The Modulus Operator

Most people are more familiar with addition, subtraction, multiplication, and division
than with the modulus operation, so let’s take a moment to look at the modulus operator
in action. The modulus operator returns the remainder of an integer division. In combi-
nation with integer division, the modulus operation is particularly useful in problems that
require dividing a quantity into different integral units, such as converting inches to feet
and inches or converting dollars to quarters, dimes, nickels, and pennies. In Chapter 2,

101

102

Chapter 3 Dealing with Data

Listing 2.6 converts weight in British stone to pounds. Listing 3.12 reverses the process,
converting weight in pounds to stone. A stone, you remember, is 14 pounds, and most
British bathroom scales are calibrated in this unit. The program uses integer division to
find the largest number of whole stone in the weight, and it uses the modulus operator to
find the number of pounds left over.

Listing 3.12 modulus.cpp

// modulus.cpp -- uses % operator to convert lbs to stone
#include <iostreams>
int main()
{
using namespace std;
const int Lbs per stn = 14;
int 1lbs;

cout << "Enter your weight in pounds: ";
cin >> lbs;

int stone = lbs / Lbs_per stn; // whole stone
int pounds = lbs % Lbs per stn; // remainder in pounds
cout << lbs << " pounds are " << stone
<< " stone, " << pounds << " pound(s).\n";
return 0;

Here is a sample run of the program in Listing 3.12:

Enter your weight in pounds: 181
181 pounds are 12 stone, 13 pound(s).

In the expression 1bs / Lbs_per stn, both operands are type int, so the computer
performs integer division. With a 1bs value of 181, the expression evaluates to 12.The
product of 12 and 14 is 168, so the remainder of dividing 14 into 181 is 13, and that’s the
value of 1bs % Lbs_per_ stn. Now you are prepared technically, if not emotionally, to
respond to questions about your weight when you travel in Great Britain.

Type Conversions

C++’s profusion of types lets you match the type to the need. It also complicates life for
the computer. For example, adding two short values may involve different hardware
instructions than adding two long values. With 11 integer types and 3 floating-point
types, the computer can have a lot of different cases to handle, especially if you start mix-
ing types.To help deal with this potential mishmash, C++ makes many type conversions
automatically:

s C++ converts values when you assign a value of one arithmetic type to a variable
of another arithmetic type.

C++ Arithmetic Operators

» C++ converts values when you combine mixed types in expressions.

= C++ converts values when you pass arguments to functions.

If you don’t understand what happens in these automatic conversions, you might find
some program results baftling, so let’s take a more detailed look at the rules.

Conversion on Initialization and Assignment

C++ is fairly liberal in allowing you to assign a numeric value of one type to a variable of
another type. Whenever you do so, the value is converted to the type of the receiving
variable. For example, suppose so_long is type long, thirty is type short, and you have
the following statement in a program:

so_long = thirty; // assigning a short to a long

The program takes the value of thirty (typically a 16-bit value) and expands it to a
long value (typically a 32-bit value) upon making the assignment. Note that the expan-
sion creates a new value to place into so_long; the contents of thirty are unaltered.

Assigning a value to a type with a greater range usually poses no problem. For exam-
ple, assigning a short value to a long variable doesn’t change the value; it just gives the
value a few more bytes in which to laze about. However, assigning a large long value
such as 2111222333 to a £loat variable results in the loss of some precision. Because
float can have just six significant figures, the value can be rounded to 2.11122E9. So
while some conversions are safe, some may pose difficulties. Table 3.3 points out some
possible conversion problems.

Table 3.3 Potential Numeric Conversion Problems

Conversion Type Potential Problems

Bigger floating-point type to smaller float- Loss of precision (significant figures); value
ing-point type, such as double to float might be out of range for target type, in which
case result is undefined.

Floating-point type to integer type Loss of fractional part; original value might be
out of range for target type, in which case result
is undefined.

Bigger integer type to smaller integer type, Original value might be out of range for target
such as long to short type; typically just the low-order bytes are copied.

A zero value assigned to a bool variable is converted to false, and a nonzero value is
converted to true.

Assigning floating-point values to integer types poses a couple problems. First, convert-
ing floating-point to integer results in truncating the number (discarding the fractional
part). Second, a £loat value might be too big to fit in a cramped int variable. In that

103

104

Chapter 3 Dealing with Data

case, C++ doesn’t define what the result should be; that means different implementations
can respond differently.

Traditional initialization behaves the same as assignment. Listing 3.13 shows a few con-
versions by initialization.

Listing 3.13 init.cpp

// init.cpp -- type changes on initialization
#include <iostream>
int main()

using namespace std;

cout.setf (ios_base::fixed, ios base::floatfield);

float tree = 3; // int converted to float
int guess(3.9832); // double converted to int
int debt = 7.2E12; // result not defined in C++
cout << "tree = " << tree << endl;

cout << "guess = " << guess << endl;

cout << "debt = " << debt << endl;

return 0;

Here is the output from the program in Listing 3.13 for one system:

tree = 3.000000
guess = 3
debt = 1634811904

In this case, tree is assigned the floating-point value 3.0. Assigning 3.9832 to the int
variable guess causes the value to be truncated to 3; C++ uses truncation (discarding the
fractional part) and not rounding (finding the closest integer value) when converting
floating-point types to integer types. Finally, note that the int variable debt is unable to
hold the value 7.2E12.This creates a situation in which C++ doesn’t define the result.
On this system, debt ends up with the value 1634811904, or about 1.6E09. Well, that’s a
novel way to reduce massive indebtedness!

Some compilers issue warnings of possible data loss for those statements that initialize
integer variables to floating-point values. Also the value displayed for debt varies from
compiler to compiler. For example, running the same program from Listing 3.13 on a
second system produced a value of 2147483647.

Initialization Conversions When {} Are Used (C++11)

C++11 calls an initialization that uses braces a list-initialization. That’s because this form
can be used more generally to provide lists of values for more complicated data types. It’s
more restrictive in type conversions than the forms used in Listing 13.3. In particular, list-
initialization doesn’t permit narrowing, which is when the type of the variable may not be
able to represent the assigned value. For example, conversions of floating types to integer

C++ Arithmetic Operators

types are not allowed. Converting from integer types to other integer types or floating
types may be allowed if the compiler can tell if the target variable can hold the value cor-
rectly. For instance, it’s okay to initialize a 1ong variable to an int value because long is
always at least as big as int. Conversions in the other direction may be allowed if the
value is a constant that can be handled by the type:

const int code = 66;

int x = 66;

char cl {31325}; // narrowing, not allowed

char c2 = {66}; // allowed because char can hold 66

char c3 {code}; // ditto

char c4 = {x}; // not allowed, x is not constant

x = 31325;

char c¢c5 = x; // allowed by this form of initialization

For the initialization of c4, we know x has the value 66, but to the compiler, x is a
variable and conceivably could have some other, much larger value. It’s not the compiler’s
job to keep track of what may have happened to x between the time it was initialized and
the time it was used in the attempted initialization of c4.

Conversions in Expressions

Consider what happens when you combine two different arithmetic types in one expres-
sion. C++ makes two kinds of automatic conversions in that case. First, some types are
automatically converted whenever they occur. Second, some types are converted when
they are combined with other types in an expression.

First, let’s examine the automatic conversions. When it evaluates expressions, C++
converts bool, char, unsigned char, signed char, and short values to int.ln.parﬁcu—
lar, true is promoted to 1 and false to 0.These conversions are termed integral
promotions. For example, consider the following fowl statements:

short chickens = 20; // line 1
short ducks = 35; // line 2
short fowl = chickens + ducks; // line 3

To execute the statement on line 3,2 C++ program takes the values of chickens and
ducks and converts both to int.Then the program converts the result back to type short
because the answer is assigned to a type short variable.You might find this a bit round-
about, but it does make sense. The int type is generally chosen to be the computer’s
most natural type, which means the computer probably does calculations fastest for
that type.

There are more integral promotions: The unsigned short type is converted to int if
short is smaller than int. If the two types are the same size, unsigned short is con-
verted to unsigned int.This rule ensures that there’s no data loss in promoting
unsigned short. Similarly, wchar t is promoted to the first of the following types that is
wide enough to accommodate its range: int, unsigned int, long, or unsigned long.

105

106

Chapter 3 Dealing with Data

Then there are the conversions that take place when you arithmetically combine dif-
ferent types, such as adding an int to a £loat.When an operation involves two types, the
smaller is converted to the larger. For example, the program in Listing 3.11 divides 9.0 by
5. Because 9.0 is type double, the program converts 5 to type double before it does the
division. More generally, the compiler goes through a checklist to determine which con-
versions to make in an arithmetic expression. C++11 has modified the list slightly. Here’s
the C++11 version of the list, which the compiler goes through in order:

1. If either operand is type long double, the other operand is converted to long
double.

2. Otherwise, if either operand is double, the other operand is converted to double.
3. Otherwise, if either operand is £loat, the other operand is converted to float.
4. Otherwise, the operands are integer types and the integral promotions are made.

5. In that case, if both operands are signed or if both are unsigned, and one is of lower
rank than the other, it is converted to the higher rank.

6. Otherwise, one operand is signed and one is unsigned. If the unsigned operand is of
higher rank than the signed operand, the latter is converted to the type of the
unsigned operand.

7. Otherwise, if the signed type can represent all values of the unsigned type, the
unsigned operand is converted to the type of the signed type.

8. Otherwise, both operands are converted to the unsigned version of the signed type.

ANSI C follows the same rules as ISO 2003 C++, which are slightly different from
the preceding rules, and classic K&R C has yet slightly different rules. For example, classic
C always promotes float to double, even if both operands are £loat.

This list introduces the concept of ranking the integer types. In brief, as you might
expect, the basic ranking for signed integer types from high to low is long long, long,
int, short, and signed char. Unsigned types have the same rank as the corresponding
signed type. The three types char, signed char,and unsigned char all have the same
rank.The bool type has the lowest rank.The wchar t, char1é_t,and char32_t have the
same types as their underlying types.

Conversions in Passing Arguments

Normally, C++ function prototyping controls type conversions for the passing of argu-
ments, as you'll learn in Chapter 7, “Functions: C++’ Programming Modules.” However,
it is possible, although usually unwise, to waive prototype control for argument passing.
In that case, C++ applies the integral promotions to the char and short types (signed

C++ Arithmetic Operators

and unsigned). Also to preserve compatibility with huge amounts of code in classic C,
C++ promotes £loat arguments to double when passing them to a function that waives

prototyping.

Type Casts

C++ empowers you to force type conversions explicitly via the type cast mechanism.
(C++ recognizes the need for type rules, and it also recognizes the need to occasionally
override those rules.) The type cast comes in two forms. For example, to convert an int
value stored in a variable called thorn to type long, you can use either of the following

expressions:
(long) thorn // returns a type long conversion of thorn
long (thorn) // returns a type long conversion of thorn

The type cast doesn’t alter the thorn variable itself; instead, it creates a new value of
the indicated type, which you can then use in an expression, as in the following:

cout << int('Q'); // displays the integer code for 'Q'

More generally, you can do the following:

(typeName) value // converts value to typeName type
typeName (value) // converts value to typeName type

The first form is straight C.The second form is pure C++.The idea behind the new
form is to make a type cast look like a function call. This makes type casts for the built-in
types look like the type conversions you can design for user-defined classes.

C++ also introduces four type cast operators that are more restrictive in how they can
be used. Chapter 15, “Friends, Exceptions, and More,” covers them. Of the four, the
static_cast<> operator, can be used for converting values from one numeric type to
another. For example, using it to convert thorn to a type long value looks like this:

static_cast<long> (thorn) // returns a type long conversion of thorn

More generally, you can do the following:

static_cast<typeNames> (value) // converts value to typeName type

As Chapter 15 discusses further, Stroustrup felt that the traditional C-style type cast is
dangerously unlimited in its possibilities. The static_cast<> operator is more restrictive
than the traditional type cast.

Listing 3.14 briefly illustrates both the basic type cast (two forms) and static_cast<s.
Imagine that the first section of this listing is part of a powerful ecological modeling pro-
gram that does floating-point calculations that are converted to integral numbers of birds
and animals. The results you get depend on when you convert. The calculation for auks
first adds the floating-point values and then converts the sum to int upon assignment.
But the calculations for bats and coots first use type casts to convert the floating-point
values to int and then sum the values.The final part of the program shows how you can
use a type cast to display the ASCII code for a type char value.

107

108

Chapter 3 Dealing with Data

Listing 3.14 typecast.cpp

// typecast.cpp -- forcing type changes
#include <iostreams>
int main()

using namespace std;

int auks, bats, coots;

// the following statement adds the values as double,
// then converts the result to int
auks = 19.99 + 11.99;

// these statements add values as int
bats = (int) 19.99 + (int) 11.99; // old C syntax

coots = int (19.99) + int (11.99); // new C++ syntax
cout << "auks = " << auks << ", bats = " << bats;
cout << ", coots = " << coots << endl;

char ch = '2';

cout << "The code for " << ch << " is "; // print as char
cout << int(ch) << endl; // print as int

cout << "Yes, the code is ";

cout << static_cast<int>(ch) << endl; // using static_ cast
return 0;

Here is the result of the program in Listing 3.14:

auks = 31, bats = 30, coots = 30
The code for Z is 90
Yes, the code is 90

First, adding 19.99 to 11.99 yields 31.98. When this value is assigned to the int vari-
able auks, it’s truncated to 31. But using type casts truncates the same two values to 19
and 11 before addition, making 30 the result for both bats and coots.Then two cout
statements use type casts to convert a type char value to int before they display the result.
These conversions cause cout to print the value as an integer rather than as a character.

This program illustrates two reasons to use type casting. First, you might have values
that are stored as type double but are used to calculate a type int value. For example, you
might be fitting a position to a grid or modeling integer values, such as populations, with
floating-point numbers.You might want the calculations to treat the values as int. Type
casting enables you to do so directly. Notice that you get a different result, at least for
these values, when you convert to int and add than you do when you add first and then
convert to int.

Summary

The second part of the program shows the most common reason to use a type cast: the
capability to compel data in one form to meet a different expectation. In Listing 3.14, for
example, the char variable ch holds the code for the letter Z. Using cout with ch displays
the character Z because cout zeros in on the fact that ch is type char. But by type casting
ch to type int, you get cout to shift to int mode and print the ASCII code stored in ch.

auto Declarations in C++11

C++11 introduces a facility that allows the compiler to deduce a type from the type of
an initialization value. For this purpose it redefines the meaning of auto, a keyword dat-
ing back to C, but one hardly ever used. (Chapter 9 discusses the previous meaning of
auto.) Just use auto instead of the type name in an initializing declaration, and the com-
piler assigns the variable the same type as that of the initializer:

auto n = 100; // n is int

auto x = 1.5; // % is double

auto y = 1.3el2L; // y is long double

However, this automatic type deduction isn'’t really intended for such simple cases.
Indeed, you might even go astray. For example, suppose x, y, and z are all intended to be
type double. Consider the following code:

auto x = 0.0; // ok, x is double because 0.0 is double
double y = 0; // ok, 0 automatically converted to 0.0

auto z = 0; // oops, z is int because 0 is int

Using o instead of 0.0 doesn’t cause problems with explicit typing, but it does with
automatic type conversion.

Automatic type deduction becomes much more useful when dealing with compli-
cated types, such as those in the STL (Standard Template Library). For example, C++98
code might have this:

std: :vector<double> scores;
std::vector<double>::iterator pv = scores.begin();

C++11 allows you to write this instead:
std: :vector<double> scores;

auto pv = scores.begin();

We’ll mention this new meaning of auto again later when it becomes more relevant
to the topics at hand.

Summary

C++’ basic types fall into two groups. One group consists of values that are stored as
integers. The second group consists of values that are stored in floating-point format. The
integer types differ from each other in the amount of memory used to store values and in
whether they are signed or unsigned. From smallest to largest, the integer types are bool,

109

110

Chapter 3 Dealing with Data

char, signed char,unsigned char, short,unsigned short, int, unsigned int, long,
unsigned long, and, with C++11, long long, and unsigned long long.There is also a
wchar t type whose placement in this sequence of size depends on the implementation.
C++11 adds the charie_t and char32_t types, which are wide enough to hold 16-bit
and 32-bit character codes, respectively. C++ guarantees that char is large enough to
hold any member of the system’s basic character set, wchar t can hold any member of
the system’s extended character set, short is at least 16 bits, int is at least as big as short,
and long is at least 32 bits and at least as large as int.The exact sizes depend on the
implementation.

Characters are represented by their numeric codes. The I/O system determines
whether a code is interpreted as a character or as a number.

The floating-point types can represent fractional values and values much larger than
integers can represent. The three floating-point types are £loat, double, and long dou-
ble. C++ guarantees that £loat is no larger than double and that double is no larger
than long double.Typically, £loat uses 32 bits of memory, double uses 64 bits, and long
double uses 80 to 128 bits.

By providing a variety of types in different sizes and in both signed and unsigned vari-
eties, C++ lets you match the type to particular data requirements.

C++ uses operators to provide the usual arithmetical support for numeric types: addi-
tion, subtraction, multiplication, division, and taking the modulus. When two operators
seek to operate on the same value, C++’s precedence and associativity rules determine
which operation takes place first.

C++ converts values from one type to another when you assign values to a variable,
mix types in arithmetic, and use type casts to force type conversions. Many type conver-
sions are “‘safe,” meaning you can make them with no loss or alteration of data. For exam-
ple, you can convert an int value to a long value with no problems. Others, such as
conversions of floating-point types to integer types, require more care.

At first, you might find the large number of basic C++ types a little excessive, particu-
larly when you take into account the various conversion rules. But most likely you will
eventually find occasions when one of the types is just what you need at the time, and
you’ll thank C++ for having it.

Chapter Review

1. Why does C++ have more than one integer type?

2. Declare variables matching the following descriptions:
a. A short integer with the value 80
b. An unsigned int integer with the value 42,110
c. An integer with the value 3,000,000,000

Programming Exercises 111

3. What safeguards does C++ provide to keep you from exceeding the limits of an
integer type?

4. What is the distinction between 33L and 33?

5. Consider the two C++ statements that follow:
char grade = 65;

char grade = 'A';
Are they equivalent?

6. How could you use C++ to find out which character the code 88 represents?
Come up with at least two ways.

7. Assigning a long value to a float can result in a rounding error. What about
assigning long to double? long long to double?

8. Evaluate the following expressions as C++ would:

a. 8%¥9+2

b. 6*%3/4

c. 3/4%6

d 6.0*3/4
e. 15%4

9. Suppose x1 and x2 are two type double variables that you want to add as integers
and assign to an integer variable. Construct a C++ statement for doing so. What if
you want to add them as type double and then convert to int?

10. What is the variable type for each of the following declarations?
a. auto cars = 15;
b. auto iou = 150.37f;
C. auto level = 'B';
d. auto crat = U'/U00002155';

e. auto fract = 8.25f/2.5;

Programming Exercises

1. Write a short program that asks for your height in integer inches and then converts
your height to feet and inches. Have the program use the underscore character to
indicate where to type the response. Also use a const symbolic constant to repre-
sent the conversion factor.

112

Chapter 3 Dealing with Data

Write a short program that asks for your height in feet and inches and your weight
in pounds. (Use three variables to store the information.) Have the program report
your body mass index (BMI).To calculate the BMI, first convert your height in feet
and inches to your height in inches (1 foot = 12 inches). Then convert your height
in inches to your height in meters by multiplying by 0.0254.Then convert your
weight in pounds into your mass in kilograms by dividing by 2.2. Finally, compute
your BMI by dividing your mass in kilograms by the square of your height in
meters. Use symbolic constants to represent the various conversion factors.

Write a program that asks the user to enter a latitude in degrees, minutes, and sec-
onds and that then displays the latitude in decimal format. There are 60 seconds of
arc to a minute and 60 minutes of arc to a degree; represent these values with sym-
bolic constants.You should use a separate variable for each input value. A sample
run should look like this:

Enter a latitude in degrees, minutes, and seconds:

First, enter the degrees: 37

Next, enter the minutes of arc: 51

Finally, enter the seconds of arc: 19

37 degrees, 51 minutes, 19 seconds = 37.8553 degrees

Write a program that asks the user to enter the number of seconds as an integer
value (use type long, or, if available, long long) and that then displays the equiva-
lent time in days, hours, minutes, and seconds. Use symbolic constants to represent
the number of hours in the day, the number of minutes in an hour, and the number
of seconds in a minute. The output should look like this:

Enter the number of seconds: 31600000

31600000 seconds = 365 days, 17 hours, 46 minutes, 40 seconds

Worite a program that requests the user to enter the current world population and
the current population of the U.S. (or of some other nation of your choice). Store
the information in variables of type long long. Have the program display the per-
cent that the U.S. (or other nation’s) population is of the world’s population. The
output should look something like this:

Enter the world's population: 6898758899

Enter the population of the US: 310783781

The population of the US is 4.50492% of the world population.

You can use the Internet to get more recent figures.

Write a program that asks how many miles you have driven and how many gallons
of gasoline you have used and then reports the miles per gallon your car has gotten.
Or, if you prefer, the program can request distance in kilometers and petrol in liters
and then report the result European style, in liters per 100 kilometers.

Programming Exercises 113

7. Write a program that asks you to enter an automobile gasoline consumption figure
in the European style (liters per 100 kilometers) and converts to the U.S. style of
miles per gallon. Note that in addition to using different units of measurement, the
U.S. approach (distance / fuel) is the inverse of the European approach (fuel / dis-
tance). Note that 100 kilometers is 62.14 miles, and 1 gallon is 3.875 liters. Thus, 19
mpg is about 12.4 1/100 km, and 27 mpg is about 8.7 1/100 km.

This page intentionally left blank

A

Compound Types

In this chapter you’ll learn about the following:

= Creating and using arrays

= Creating and using C-style strings

= Creating and using string-class strings

= Using the getline () and get () methods for reading strings
= Mixing string and numeric input

» Creating and using structures

= Creating and using unions

= Creating and using enumerations

= Creating and using pointers

= Managing dynamic memory with new and delete
= Creating dynamic arrays

= Creating dynamic structures

= Automatic, static, and dynamic storage

= The vector and array classes (an introduction)

Say you’ve developed a computer game called User-Hostile in which players match
wits with a cryptic and abusive computer interface. Now you must write a program that
keeps track of your monthly game sales for a five-year period. Or you want to inventory
your accumulation of hacker-hero trading cards.You soon conclude that you need some-
thing more than C++’s simple basic types to meet these data requirements, and C++
offers something more—compound types. These are types built from the basic integer
and floating-point types. The most far-reaching compound type is the class, that bastion
of OOP toward which we are progressing. But C++ also supports several more modest
compound types taken from C.The array, for example, can hold several values of the same
type. A particular kind of array can hold a string, which is a series of characters. Structures

can hold several values of differing types. Then there are pointers, which are variables that
tell a computer where data is placed.You’ll examine all these compound forms (except

116

Chapter 4 Compound Types

classes) in this chapter, take a first look at new and delete and how you can use them to
manage data, and take an introductory look at the C++ string class, which gives you an
alternative way to work with strings.

Introducing Arrays

An array is a data form that can hold several values, all of one type. For example, an array
can hold 60 type int values that represent five years of game sales data, 12 short values
that represent the number of days in each month, or 365 £1loat values that indicate your
food expenses for each day of the year. Each value is stored in a separate array element,
and the computer stores all the elements of an array consecutively in memory.

To create an array, you use a declaration statement. An array declaration should indi-
cate three things:

= The type of value to be stored in each element
= The name of the array

= The number of elements in the array

You accomplish this in C++ by modifying the declaration for a simple variable and
adding brackets that contain the number of elements. For example, the following declara-
tion creates an array named months that has 12 elements, each of which can hold a type
short value:

short months[12]; // creates array of 12 short

Each element, in essence, is a variable that you can treat as a simple variable.
This is the general form for declaring an array:

typeName arrayName|arraySize];

The expression arraysSize, which is the number of elements, must be an integer con-
stant, such as 10 or a const value, or a constant expression, such as 8 * sizeof (int),
for which all values are known at the time compilation takes place. In particular,
arraySize cannot be a variable whose value is set while the program is running. How-
ever, later in this chapter you’ll learn how to use the new operator to get around that
restriction.

The Array as Compound Type

An array is called a compound type because it is built from some other type. (C uses the
term derived type, but because C++ uses the term derived for class relationships, it had to
come up with a new term.) You can’t simply declare that something is an array; it always has
to be an array of some particular type. There is no generalized array type. Instead, there are
many specific array types, such as array of char or array of 1ong. For example, consider this
declaration:

float loans([20];

The type for 1oans is not “array”; rather, it is “array of f1oat.” This emphasizes that the
loans array is built from the float type.

Introducing Arrays

Much of the usefulness of the array comes from the fact that you can access array ele-
ments individually. The way to do this is to use a subscript, or an index, to number the ele-
ments. C++ array numbering starts with zero. (This is nonnegotiable; you have to start at
zero. Pascal and BASIC users will have to adjust.) C++ uses a bracket notation with the
index to specify an array element. For example, months [0] is the first element of the
months array, and months [11] is the last element. Note that the index of the last element
is one less than the size of the array (see Figure 4.1). Thus, an array declaration enables you
to create a lot of variables with a single declaration, and you can then use an index to
identify and access individual elements.

int ragnar[7];
subscripts
o 1 2 3 4 5 6 (or indices)

HEENT | ey

] |

third element

second element

first element

ragnar is an array holding seven values,
each of which is a type int variable

Figure 4.1 Creating an array.

The Importance of Valid Subscript Values

The compiler does not check to see if you use a valid subscript. For instance, the compiler
won’t complain if you assign a value to the nonexistent element months [101]. But that
assignment could cause problems when the program runs, possibly corrupting data or code,

possibly causing the program to abort. So it is your responsibility to make sure that your pro-
gram uses only valid subscript values.

The yam analysis program in Listing 4.1 demonstrates a few properties of arrays,
including declaring an array, assigning values to array elements, and initializing an array.

Listing 4.1 arrayone.cpp

// arrayone.cpp -- small arrays of integers

#include <iostreams

int main()

{
using namespace std;
int yams|[3]; // creates array with three elements
yams [0] = 7; // assign value to first element

117

118 Chapter 4 Compound Types

yams [1] = 8;
yams [2] = 6;
int yamcosts[3] = {20, 30, 5}; // create, initialize array

// NOTE: If your C++ compiler or translator can't initialize
// this array, use static int yamcosts[3] instead of
// int yamcosts[3]

cout << "Total yams = ";

cout << yams[0] + yams[l] + yams[2] << endl;

cout << "The package with " << yams[l] << " yams costs ";
cout << yamcosts[l] << " cents per yam.\n";

int total = yams[0] * yamcosts[0] + yams[l] * yamcosts[1l];
total = total + yams[2] * yamcosts[2];

cout << "The total yam expense is " << total << " cents.\n";

cout << "\nSize of yams array = " << sizeof yams;
cout << " bytes.\n";

cout << "Size of one element = " << sizeof yams[0];
cout << " bytes.\n";

return 0;

Here is the output from the program in Listing 4.1:

Total yams = 21
The package with 8 yams costs 30 cents per yam.
The total yam expense is 410 cents.

Size of yams array = 12 bytes.
Size of one element = 4 bytes.

Program Notes

First, the program in Listing 4.1 creates a three-element array called yams. Because yams
has three elements, the elements are numbered from 0 through 2, and arrayone.cpp uses
index values of 0 through 2 to assign values to the three individual elements. Each indi-
vidual yam element is an int with all the rights and privileges of an int type, so
arrayone.cpp can, and does, assign values to elements, add elements, multiply elements,
and display elements.

The program uses the long way to assign values to the yam elements. C++ also lets you
initialize array elements within the declaration statement. Listing 4.1 uses this shortcut to
assign values to the yamcosts array:

int yamcosts[3] = {20, 30, 5};

Introducing Arrays

It simply provides a comma-separated list of values (the initialization list) enclosed in
braces. The spaces in the list are optional. If you don’t initialize an array that’s defined
inside a function, the element values remain undefined. That means the element takes on
whatever value previously resided at that location in memory.

Next, the program uses the array values in a few calculations. This part of the program
looks cluttered with all the subscripts and brackets. The for loop, coming up in Chapter 5,
“Loops and Relational Expressions,” provides a powerful way to deal with arrays and elimi-
nates the need to write each index explicitly. For the time being, we’ll stick to small arrays.

As you should recall, the sizeof operator returns the size, in bytes, of a type or data
object. Note that if you use the sizeof operator with an array name, you get the number
of bytes in the whole array. But if you use sizeof with an array element, you get the size,
in bytes, of the element. This illustrates that yams is an array, but yams [1] is just an int.

Initialization Rules for Arrays

C++ has several rules about initializing arrays. They restrict when you can do it, and they
determine what happens if the number of array elements doesn’t match the number of
values in the initializer. Let’s examine these rules.

You can use the initialization form only when defining the array.You cannot use it later,
and you cannot assign one array wholesale to another:

int cards[4] = {3, 6, 8, 10}; // okay
int hand[4]; // okay
hand[4] = {5, 6, 7, 9}; // not allowed
hand = cards; // not allowed

However, you can use subscripts and assign values to the elements of an array individually.
When initializing an array, you can provide fewer values than array elements. For
example, the following statement initializes only the first two elements of hotelTips:

float hotelTips[5] = {5.0, 2.5};
If you partially initialize an array, the compiler sets the remaining elements to zero.

Thus, it’s easy to initialize all the elements of an array to zero—just explicitly initialize the
first element to zero and then let the compiler initialize the remaining elements to zero:

long totals[500] = {0};
Note that if you initialize to {1} instead of to {0}, just the first element is set to 1; the
rest still get set to 0.

If you leave the square brackets ([1) empty when you initialize an array, the C++ com-
piler counts the elements for you. Suppose, for example, that you make this declaration:

short things[] = {1, 5, 3, 8};

The compiler makes things an array of four elements.

119

120 Chapter 4 Compound Types

Letting the Compiler Do It

Often, letting the compiler count the number of elements is poor practice because its count
can be different from what you think it should be. You could, for instance, accidently omit an
initial value from the list. However, this approach can be a safe one for initializing a charac-
ter array to a string, as you’ll soon see. And if your main concern is that the program, not
you, knows how large an array is, you can do something like this:

short things[] = {1, 5, 3, 8};
int num elements = sizeof things / sizeof (short);

Whether this is useful or lazy depends on the circumstances.

C++11 Array Initialization

As Chapter 3, “Dealing with Data,” mentioned, C++11 makes the brace form of initial-
ization (list-initialization) a universal form for all types. Arrays already use list-initializa-
tion, but the C++11 version adds a few more features.

First, you can drop the = sign when initializing an array:

double earnings[4] {1.2e4, 1.6e4, 1.le4, 1.7e4}; // okay with C++11

Second, you can use empty braces to set all the elements to 0:

unsigned int counts[10] = {}; // all elements set to 0
float balances[100] {}; // all elements set to 0

Third, as discussed in Chapter 3, list-initialization protects against narrowing;:

long plifs[] = {25, 92, 3.0}; // not allowed
char slifs([4] {'h', 'i', 1122011, '\0'}; // not allowed
char tlifs([4] {'h', 'i', 112, '\0'}; // allowed

The first initialization fails because converting from a floating-point type to an integer
type is narrowing, even if the floating-point value has only zeros after the decimal point.
The second initialization fails because 1122011 is outside the range of a char, assuming
we have an 8-bit char.The third succeeds because, even though 112 is an int value, it still
is in the range of a char.

The C++ Standard Template Library (STL) provides an alternative to arrays called the
vector template class, and C++11 adds an array template class. These alternatives are
more sophisticated and flexible than the built-in array composite type. This chapter will
discuss them briefly later, and Chapter 16, “The string Class and the Standard Template
Library,” discusses them more fully.

Strings

A string 1s a series of characters stored in consecutive bytes of memory. C++ has two ways
of dealing with strings. The first, taken from C and often called a C-style string, is the first
one this chapter examines. Later, this chapter discusses an alternative method based on a
string class library.

Strings

The idea of a series of characters stored in consecutive bytes implies that you can store
a string in an array of char, with each character kept in its own array element. Strings
provide a convenient way to store text information, such as messages to the user (“Please
tell me your secret Swiss bank account number”) or responses from the user (“You must be jok-
ing”). C-style strings have a special feature: The last character of every string is the null
character. This character, written \0, is the character with ASCII code 0, and it serves to
mark the string’s end. For example, consider the following two declarations:
char dog[8] = { 'b', 'e', 'a', 'u', 'x', ' ', 'I', 'I'}; // not a string!
char cat[8] = {'f', 'a', 't', 'e', 's', 's', 'a', '\0'}; // a string!

Both of these arrays are arrays of char, but only the second is a string. The null charac-
ter plays a fundamental role in C-style strings. For example, C++ has many functions that
handle strings, including those used by cout.They all work by processing a string charac-
ter-by-character until they reach the null character. If you ask cout to display a nice string
like cat in the preceding example, it displays the first seven characters, detects the null
character, and stops. But if you are ungracious enough to tell cout to display the dog array
from the preceding example, which is not a string, cout prints the eight letters in the
array and then keeps marching through memory byte-by-byte, interpreting each byte as a
character to print, until it reaches a null character. Because null characters, which really are
bytes set to zero, tend to be common in memory, the damage 1s usually contained quickly;
nonetheless, you should not treat nonstring character arrays as strings.

The cat array example makes initializing an array to a string look tedious—all those
single quotes and then having to remember the null character. Don’t worry. There is a bet-
ter way to initialize a character array to a string. Just use a quoted string, called a string con-
stant or string literal, as in the following:

char bird[11] = "Mr. Cheeps"; // the \0 is understood
char fish[] = "Bubbles"; // let the compiler count

Quoted strings always include the terminating null character implicitly, so you don’t
have to spell it out (see Figure 4.2). Also the various C++ input facilities for reading a
string from keyboard input into a char array automatically add the terminating null
character for you. (If, when you run the program in Listing 4.1, you discover that you
have to use the keyword static to initialize an array, you have to use it with these char
arrays, too.)

Of course, you should make sure the array is large enough to hold all the characters of
the string, including the null character. Initializing a character array with a string constant
is one case where it may be safer to let the compiler count the number of elements for
you. There is no harm, other than wasted space, in making an array larger than the string.
That’s because functions that work with strings are guided by the location of the null
character, not by the size of the array. C++ imposes no limits on the length of a string.

Caution

When determining the minimum array size necessary to hold a string, remember to include
the terminating null character in your count.

121

122

Chapter 4 Compound Types

char boss[8] = "Bozo";

B 0 z o \0 \0 \0 \0

I\ v J
null character remaining
automatically elements
added atend setto \@

Figure 4.2 Initializing an array to a string.

Note that a string constant (with double quotes) is not interchangeable with a charac-
ter constant (with single quotes). A character constant, such as 's', is a shorthand notation
for the code for a character. On an ASCII system, 'S' is just another way of writing 83.
Thus, the following statement assigns the value 83 to shirt_size:

char shirt size = 'S'; // this is fine

But "s» is not a character constant; it represents the string consisting of two characters,
the s and the \o0 characters. Even worse, "s" actually represents the memory address at
which the string is stored. So a statement like the following attempts to assign a memory
address to shirt_size:

char shirt size = "S"; // illegal type mismatch

Because an address is a separate type in C++,a C++ compiler won't allow this sort of’
nonsense. (We’ll return to this point later in this chapter after we’ve discussed pointers.)

Concatenating String Literals

Sometimes a string may be too long to conveniently fit on one line of code. C++ enables
you to concatenate string literals—that is, to combine two quoted strings into one.
Indeed, any two string constants separated only by whitespace (spaces, tabs, and newlines)
are automatically joined into one.Thus, all the following output statements are equivalent
to each other:

cout << "I'd give my right arm to be" " a great violinist.\n";
cout << "I'd give my right arm to be a great violinist.\n";
cout << "I'd give my right ar"

"m to be a great violinist.\n";

Note that the join doesn’t add any spaces to the joined strings. The first character of
the second string immediately follows the last character, not counting \ 0, of the first
string. The \ 0 character from the first string is replaced by the first character of the
second string.

Strings

Using Strings in an Array

The two most common ways of getting a string into an array are to initialize an array to
a string constant and to read keyboard or file input into an array. Listing 4.2 demonstrates
these approaches by initializing one array to a quoted string and using cin to place an
input string into a second array. The program also uses the standard C library function
strlen() to get the length of a string. The standard cstring header file (or string.h
for older implementations) provides declarations for this and many other string-related
functions.

Listing 4.2 strings.cpp

// strings.cpp -- storing strings in an array

#include <iostreams

#include <cstring> // for the strlen() function

int main()

{
using namespace std;
const int Size = 15;
char namel[Size]; // empty array
char name2[Size] = "C++owboy"; // initialized array
// NOTE: some implementations may require the static keyword
// to initialize the array name2

cout << "Howdy! I'm " << name2;

cout << "! What's your name?\n";

cin >> namel;

cout << "Well, " << namel << ", your name has ";

cout << strlen(namel) << " letters and is stored\n";
cout << "in an array of " << sizeof (namel) << " bytes.\n";
cout << "Your initial is " << namel[0] << ".\n";

name2 [3] = '\0'; // set to null character
cout << "Here are the first 3 characters of my name: ";
cout << name2 << endl;

return 0;

Here is a sample run of the program in Listing 4.2:

Howdy! I'm C++owboy! What's your name?

Basicman

Well, Basicman, your name has 8 letters and is stored
in an array of 15 bytes.

Your initial is B.

Here are the first 3 characters of my name: C++

123

124

Chapter 4 Compound Types

Program Notes

What can you learn from Listing 4.2? First, note that the sizeof operator gives the size
of the entire array, 15 bytes, but the strlen () function returns the size of the string
stored in the array and not the size of the array itself. Also strlen() counts just the visi-
ble characters and not the null character. Thus, it returns a value of 8, not 9, for the length
of Basicman. If cosmic is a string, the minimum array size for holding that string is
strlen(cosmic) + 1.

Because namel and name2 are arrays, you can use an index to access individual charac-
ters in the array. For example, the program uses name1 [0] to find the first character in
that array. Also the program sets name2 [3] to the null character. That makes the string end
after three characters, even though more characters remain in the array (see Figure 4.3).

const int ArSize = 15;
char name2[ArSize] = "C++owboy";

string
A

name2[3] = '\0';
string

~

ignored

Figure 4.3 Shortening a string with \ 0.

Note that the program in Listing 4.2 uses a symbolic constant for the array size. Often
the size of an array appears in several statements in a program. Using a symbolic constant
to represent the size of an array simplifies revising the program to use a different array
size; you just have to change the value once, where the symbolic constant is defined.

Adventures in String Input

The strings.cpp program has a blemish that is concealed through the often useful tech-
nique of carefully selected sample input. Listing 4.3 removes the veils and shows that
string input can be tricky.

Strings

Listing 4.3 instrl.cpp

// instrl.cpp -- reading more than one string
#include <iostreams>
int main()
{
using namespace std;
const int ArSize = 20;
char name [ArSize] ;
char dessert[ArSize];

cout << "Enter your name:\n";

cin >> name;

cout << "Enter your favorite dessert:\n";
cin >> dessert;

cout << "I have some delicious " << dessert;
cout << " for you, " << name << ".\n";
return 0;

The intent of the program in Listing 4.3 is simple: Read a user’s name and favorite
dessert from the keyboard and then display the information. Here is a sample run:

Enter your name:

Alistair Dreeb

Enter your favorite dessert:

I have some delicious Dreeb for you, Alistair.

We didn’t even get a chance to respond to the dessert prompt! The program showed it
and then immediately moved on to display the final line.

The problem lies with how cin determines when you’ve finished entering a string.
You can’t enter the null character from the keyboard, so cin needs some other means for
locating the end of a string. The cin technique is to use whitespace—spaces, tabs, and
newlines—to delineate a string. This means cin reads just one word when it gets input
for a character array. After it reads this word, cin automatically adds the terminating null
character when it places the string into the array.

The practical result in this example is that cin reads Alistair as the entire first string
and puts it into the name array. This leaves poor Dreeb still sitting in the input queue.
When cin searches the input queue for the response to the favorite dessert question, it
finds Dreeb still there. Then cin gobbles up Dreeb and puts it into the dessert array (see
Figure 4.4).

Another problem, which didn’t surface in the sample run, is that the input string might
turn out to be longer than the destination array. Using cin as this example did offers no
protection against placing a 30-character string in a 20-character array.

125

126

Chapter 4 Compound Types

first string second string
I I
Alistair | | Dreeb ENTER
Read first string, Read second string,
add a null character, add a null character,
place in the name array. place in the dessert array.
Alistair\@ | | Dreeb\0

Figure 4.4 The cin view of string input.

Many programs depend on string input, so it’s worthwhile to explore this topic fur-
ther. We’ll have to draw on some of the more advanced features of cin, which are
described in Chapter 17,“Input, Output, and Files.”

Reading String Input a Line at a Time

Reading string input a word at a time is often not the most desirable choice. For instance,
suppose a program asks the user to enter a city, and the user responds with New York or
Sao Paulo.You would want the program to read and store the full names, not just New
and sao.To be able to enter whole phrases instead of single words as a string, you need a
different approach to string input. Specifically, you need a line-oriented method instead of
a word-oriented method.You are in luck, for the istream class, of which cin is an exam-
ple, has some line-oriented class member functions: getline () and get (). Both read an
entire input line—that is, up until a newline character. However, getline () then discards
the newline character, whereas get () leaves it in the input queue. Let’s look at the details,
beginning with getline ().

Line-Oriented Input with getline ()
The getline () function reads a whole line, using the newline character transmitted by
the Enter key to mark the end of input.You invoke this method by using cin.getline ()
as a function call. The function takes two arguments. The first argument is the name of
the target (that is, the array destined to hold the line of input), and the second argument
is a limit on the number of characters to be read. If this limit is, say, 20, the function reads
no more than 19 characters, leaving room to automatically add the null character at the
end.The getline () member function stops reading input when it reaches this numeric
limit or when it reads a newline character, whichever comes first.

For example, suppose you want to use getline () to read a name into the 20-element
name array.You would use this call:

cin.getline (name,20) ;

Strings

This reads the entire line into the name array, provided that the line consists of 19 or
fewer characters. (The getline () member function also has an optional third argument,
which Chapter 17 discusses.)

Listing 4.4 modifies Listing 4.3 to use cin.getline () instead of a simple cin. Other-
wise, the program is unchanged.

Listing 4.4 instr2.cpp

// instr2.cpp -- reading more than one word with getline
#include <iostreams>
int main()
{
using namespace std;
const int ArSize = 20;
char name [ArSize] ;
char dessert [ArSize];

cout << "Enter your name:\n";

cin.getline (name, ArSize); // reads through newline
cout << "Enter your favorite dessert:\n";
cin.getline (dessert, ArSize);

cout << "I have some delicious " << dessert;

cout << " for you, " << name << ".\n";

return 0;

Here is some sample output for Listing 4.4:
Enter your name:
Dirk Hammernose
Enter your favorite dessert:
Radish Torte
I have some delicious Radish Torte for you, Dirk Hammernose.

The program now reads complete names and delivers the user his just desserts! The
getline() function conveniently gets a line at a time. It reads input through the newline
character marking the end of the line, but it doesn’t save the newline character. Instead, it
replaces it with a null character when storing the string (see Figure 4.5).

Line-Oriented Input with get ()

Let’s try another approach. The istream class has another member function, get (),
which comes in several variations. One variant works much like getline (). It takes the
same arguments, interprets them the same way, and reads to the end of a line. But rather
than read and discard the newline character, get () leaves that character in the input
queue. Suppose you use two calls to get () in a row:

cin.get (name, ArSize);

cin.get (dessert, Arsize); // a problem

127

128

Chapter 4 Compound Types

Code:

char name[1@];
cout << "Enter your name: ";
cin.getline(name, 10);

User responds by typing Jud, then pressing | ENTER

Enter your name: Jud

cin.getline() responds by reading Jud, reading the
newline generated by the Enter key, and replacing it
with a null character.

o[[T

newline replaced with a null character.

Figure 4.5 getline () reads and replaces the newline character.

Because the first call leaves the newline character in the input queue, that newline
character is the first character the second call sees. Thus, get () concludes that it’s reached
the end of line without having found anything to read. Without help, get () just can’t get
past that newline character.

Fortunately, there is help in the form of a variation of get (). The call cin.get () (with
no arguments) reads the single next character, even if it is a newline, so you can use it to
dispose of the newline character and prepare for the next line of input. That is, this
sequence works:

cin.get (name, ArSize); // read first line
cin.get () ; // read newline
cin.get (dessert, Arsize); // read second line

Another way to use get () is to concatenate, or join, the two class member functions, as
follows:

cin.get (name, ArSize).get(); // concatenate member functions

What makes this possible is that cin.get (name, ArSize) returns the cin object,
which is then used as the object that invokes the get () function. Similarly, the following

Strings

statement reads two consecutive input lines into the arrays namel and name2; it’s equiva-
lent to making two separate calls to cin.getline():

cin.getline (namel, ArSize).getline(name2, ArSize);

Listing 4.5 uses concatenation. In Chapter 11, “Working with Classes,” you'll learn
how to incorporate this feature into your class definitions.

Listing 4.5 instr3.cpp

// instr3.cpp -- reading more than one word with get() & get()
#include <iostream>
int main()
{
using namespace std;
const int ArSize = 20;
char name [ArSize] ;
char dessert [ArSize];

cout << "Enter your name:\n";

cin.get (name, ArSize).get(); // read string, newline
cout << "Enter your favorite dessert:\n";

cin.get (dessert, ArSize) .get();

cout << "I have some delicious " << dessert;

cout << " for you, " << name << ".\n";

return 0;

Here is a sample run of the program in Listing 4.5:

Enter your name:

Mai Parfait

Enter your favorite dessert:

Chocolate Mousse

I have some delicious Chocolate Mousse for you, Mai Parfait.

One thing to note is how C++ allows multiple versions of functions, provided that
they have different argument lists. If you use, say, cin.get (name, ArSize),the compiler
notices you're using the form that puts a string into an array and sets up the appropriate
member function. If, instead, you use cin.get (), the compiler realizes you want the form
that reads one character. Chapter 8,“Adventures in Functions,” explores this feature,
which is called function overloading.

Why use get () instead of getline () at all? First, older implementations may not have
getline().Second, get () lets you be a bit more careful. Suppose, for example, you used
get () to read a line into an array. How can you tell if it read the whole line rather than
stopped because the array was filled? Look at the next input character. If it is a newline
character, then the whole line was read. If it is not a newline character, then there is still

129

130

Chapter 4 Compound Types

more input on that line. Chapter 17 investigates this technique. In short, getline () isa
little simpler to use, but get () makes error checking simpler.You can use either one to
read a line of input; just keep the slightly different behaviors in mind.

Empty Lines and Other Problems

‘What happens after getline () or get () reads an empty line? The original practice was
that the next input statement picked up where the last getline () or get () left off.
However, the current practice is that after get () (but not getline()) reads an empty
line, it sets something called the failbit. The implications of this act are that further input is
blocked, but you can restore input with the following command:

cin.clear();

Another potential problem is that the input string could be longer than the allocated
space. If the input line is longer than the number of characters specified, both getline ()
and get () leave the remaining characters in the input queue. However, getline () addi-

tionally sets the failbit and turns off further input.
Chapters 5, 6, and 17 investigate these properties and how to program around them.

Mixing String and Numeric Input

Mixing numeric input with line-oriented string input can cause problems. Consider the
simple program in Listing 4.6.

Listing 4.6 numstr.cpp

// numstr.cpp -- following number input with line input
#include <iostreams>
int main()
{
using namespace std;
cout << "What year was your house built?\n";
int year;
cin >> year;
cout << "What is its street address?\n";
char address[80] ;
cin.getline (address, 80);
cout << "Year built: " << year << endl;
cout << "Address: " << address << endl;
cout << "Done!\n";
return 0;

Introducing the string Class

Running the program in Listing 4.6 would look something like this:

What year was your house built?
1966

What is its street address?
Year built: 1966

Address

Done!

You never get the opportunity to enter the address. The problem is that when cin
reads the year, it leaves the newline generated by the Enter key in the input queue. Then
cin.getline () reads the newline as an empty line and assigns a null string to the
address array. The fix is to read and discard the newline before reading the address. This
can be done several ways, including by using get () with a char argument or with no
argument, as described in the preceding example.You can make these calls separately:
cin >> year;

cin.get(); // or cin.get(ch);

Or you can concatenate the calls, making use of the fact that the expression
cin >> year returns the cin object:

(cin >> year).get(); // or (cin >> year).get(ch);

If you make one of these changes to Listing 4.6, it works properly:
What year was your house built?
1966
What is its street address?
43821 Unsigned Short Street
Year built: 1966
Address: 43821 Unsigned Short Street
Done!

C++ programs frequently use pointers instead of arrays to handle strings. We’ll take up
that aspect of strings after talking a bit about pointers. Meanwhile, let’s take a look at a
more recent way to handle strings: the C++ string class.

Introducing the string Class

The ISO/ANSI C++98 Standard expanded the C++ library by adding a string class. So
now, instead of using a character array to hold a string, you can use a type string variable
(or object, to use C++ terminology). As you'll see, the string class is simpler to use than
the array and also provides a truer representation of a string as a type.

To use the string class, a program has to include the string header file. The string
class is part of the std namespace, so you have to provide a using directive or declaration
or else refer to the class as std: : string. The class definition hides the array nature of a
string and lets you treat a string much like an ordinary variable. Listing 4.7 illustrates
some of the similarities and differences between string objects and character arrays.

131

132 Chapter 4 Compound Types

Listing 4.7 strtypel.cpp

// strtypel.cpp -- using the C++ string class

#include <iostreams>

#include <string> // make string class available
int main()

{

using namespace std;

char charrl[20]; // create an empty array

char charr2([20] = "jaguar"; // create an initialized array
string strl; // create an empty string object
string str2 = "panther"; // create an initialized string

cout << "Enter a kind of feline: ";
cin >> charrl;
cout << "Enter another kind of feline: ";

cin >> stril; // use cin for input
cout << "Here are some felines:\n";
cout << charrl << " " << charr2 << " "
<< strl << " " << str2 // use cout for output
<< endl;

cout << "The third letter in " << charr2 << " is "
<< charr2[2] << endl;

cout << "The third letter in " << str2 << " is "
<< str2[2] << endl; // use array notation

return 0;

Here is a sample run of the program in Listing 4.7:

Enter a kind of feline: ocelot
Enter another kind of feline: tiger
Here are some felines:

ocelot jaguar tiger panther

The third letter in jaguar is g

The third letter in panther is n

You should learn from this example that, in many ways, you can use a string object in
the same manner as a character array:

= You can initialize a string object to a C-style string.

= You can use cin to store keyboard input in a string object.

= You can use cout to display a string object.

= You can use array notation to access individual characters stored in a string object.

Introducing the string Class

The main difference between string objects and character arrays shown in Listing 4.7
is that you declare a string object as a simple variable, not as an array:

string strl; // create an empty string object
string str2 = "panther"; // create an initialized string

The class design allows the program to handle the sizing automatically. For instance,
the declaration for stri creates a string object of length zero, but the program automat-
ically resizes str1 when it reads input into stri:

cin >> stril; // strl resized to fit input

This makes using a string object both more convenient and safer than using an array.
Conceptually, one thinks of an array of char as a collection of char storage units used to
store a string but of a string class variable as a single entity representing the string.

C++11 String Initialization

As you might expect by now, C++11 enables list-initialization for C-style strings and
string objects:

char first date[] = {"Le Chapon Dodu"};

char second date[] {"The Elegant Plate"};

string third date = {"The Bread Bowl"};

string fourth date {"Hank's Fine Eats"};

Assignment, Concatenation, and Appending

The string class makes some operations simpler than is the case for arrays. For example,
you can’t simply assign one array to another. But you can assign one string object to
another:

char charrl[20]; // create an empty array

char charr2([20] = "jaguar"; // create an initialized array
string stril; // create an empty string object
string str2 = "panther"; // create an initialized string
charrl = charr2; // INVALID, no array assignment
strl = str2; // VALID, object assignment ok

The string class simplifies combining strings. You can use the + operator to add two
string objects together and the += operator to tack on a string to the end of an existing
string object. Continuing with the preceding code, we have the following possibilities:
string str3;
str3 = strl + str2; // assign str3 the joined strings
strl += str2; // add str2 to the end of strl

Listing 4.8 illustrates these usages. Note that you can add and append C-style strings as
well as string objects to a string object.

133

134 Chapter 4 Compound Types

Listing 4.8 strtype2.cpp

// strtype2.cpp -- assigning, adding, and appending
#include <iostreams>
#include <string> // make string class available
int main()
{
using namespace std;
string sl = "penguin";
string s2, s3;

cout << "You can assign one string object to another: s2 = sl\n";
s2 = sl;

cout << "sl: " << 8l << ", s82: " << 82 << endl;

cout << "You can assign a C-style string to a string object.\n";
cout << "s2 = \'"buzzard\"\n";

s2 = "buzzard";

cout << "s2: " << 82 << endl;

cout << "You can concatenate strings: s3 = sl + s2\n";

s3 = sl + s2;

cout << "s3: " << 83 << endl;

cout << "You can append strings.\n";

sl += s2;

cout <<"sl += s2 yields sl = " << sl << endl;

s2 += " for a day";

cout <<"s2 += \" for a day\" yields s2 = " << 82 << endl;
return 0;

Recall that the escape sequence \" represents a double quotation mark that is used as a
literal character rather than as marking the limits of a string. Here is the output from the
program in Listing 4.8:

You can assign one string object to another: s2 = sl
sl: penguin, s2: penguin

You can assign a C-style string to a string object.
s2 = "buzzard"

s2: buzzard

You can concatenate strings: s3 = sl + s2

s3: penguinbuzzard

You can append strings.

sl += s2 yields sl = penguinbuzzard

s2 += " for a day" yields s2 = buzzard for a day

Introducing the string Class

More string Class Operations

Even before the string class was added to C++, programmers needed to do things like
assign strings. For C-style strings, they used functions from the C library for these tasks.
The cstring header file (formerly string.h) supports these functions. For example, you
can use the strepy () function to copy a string to a character array, and you can use the
strcat () function to append a string to a character array:

strcpy (charrl, charr2); // copy charr2 to charrl
strcat (charrl, charr2); // append contents of charr2 to charl

Listing 4.9 compares techniques used with string objects with techniques used with
character arrays.

Listing 4.9 strtype3.cpp

// strtype3.cpp -- more string class features

#include <iostreams>

#include <string> // make string class available
#include <cstring> // C-style string library

int main()

{

using namespace std;

char charr1l[20];

char charr2[20] = "jaguar";
string stril;

string str2 = "panther";

// assignment for string objects and character arrays
strl = str2; // copy str2 to strl
strcpy (charrl, charr2); // copy charr2 to charrl

// appending for string objects and character arrays
strl += " paste"; // add paste to end of strl
strcat (charrl, " juice"); // add juice to end of charrl

// finding the length of a string object and a C-style string
int lenl = strl.size(); // obtain length of strl
int len2 = strlen(charrl); // obtain length of charrl

cout << "The string " << strl << " contains "
<< lenl << " characters.\n";

cout << "The string " << charrl << " contains "
<< len2 << " characters.\n";

return 0;

135

136

Chapter 4 Compound Types

Here is the output:

The string panther paste contains 13 characters.
The string jaguar juice contains 12 characters.

The syntax for working with string objects tends to be simpler than using the C string
functions. This is especially true for more complex operations. For example, the C library
equivalent of

str3d = strl + str2;
is this:

strcpy (charr3, charrl);
strcat (charr3, charr2);

Furthermore, with arrays, there is always the danger of the destination array being too
small to hold the information, as in this example:

char site[10] = "house";
strcat (site, " of pancakes"); // memory problem

The strcat () function would attempt to copy all 12 characters into the site array,
thus overrunning adjacent memory. This might cause the program to abort, or the pro-
gram might continue running but with corrupted data. The string class, with its auto-
matic resizing as necessary, avoids this sort of problem.The C library does provide cousins
to strcat () and strcpy (), called strncat () and strncpy (), that work more safely by
taking a third argument to indicate the maximum allowed size of the target array, but
using them adds another layer of complexity in writing programs.

Notice the different syntax used to obtain the number of characters in a string:

int lenl = strl.size(); // obtain length of strl
int len2 = strlen(charrl); // obtain length of charrl

The strlen() function is a regular function that takes a C-style string as its argument
and that returns the number of characters in the string. The size () function basically
does the same thing, but the syntax for it is different. Instead of appearing as a function
argument, strl precedes the function name and is connected to it with a dot. As you saw
with the put () method in Chapter 3, this syntax indicates that str1 is an object and that
size () is a class method. A method is a function that can be invoked only by an object
belonging to the same class as the method. In this particular case, str1 is a string object,
and size () is a string method. In short, the C functions use a function argument to
identify which string to use, and the C++ string class objects use the object name and
the dot operator to indicate which string to use.

More on string Class 1/0

As you've seen, you can use cin with the >> operator to read a string object and cout
with the << operator to display a string object using the same syntax you use with a

Introducing the string Class

C-style string. But reading a line at a time instead of a word at time uses a different syn-
tax. Listing 4.10 shows this difference.

Listing 4.10 strtype4.cpp

// strtyped.cpp -- line input
#include <iostreams>

#include <string> // make string class available
#include <cstring> // C-style string library
int main()

{

using namespace std;
char charr[20];
string str;

cout << "Length of string in charr before input: "
<< strlen(charr) << endl;
cout << "Length of string in str before input: "
<< str.size() << endl;
cout << "Enter a line of text:\n";
cin.getline (charr, 20); // indicate maximum length
cout << "You entered: " << charr << endl;
cout << "Enter another line of text:\n";
getline(cin, str); // cin now an argument; no length specifier
cout << "You entered: " << str << endl;
cout << "Length of string in charr after input: "
<< strlen(charr) << endl;
cout << "Length of string in str after input: "
<< str.size() << endl;

return 0;

Here’s a sample run of the program in Listing 4.10:

Length of string in charr before input: 27
Length of string in str before input: 0
Enter a line of text:

peanut butter

You entered: peanut butter

Enter another line of text:

blueberry jam

You entered: blueberry jam

Length of string in charr after input: 13
Length of string in str after input: 13

137

138

Chapter 4 Compound Types

Note that the program says the length of the string in the array charr before input is
27, which is larger than the size of the array! Two things are going on here. The first is
that the contents of an uninitialized array are undefined. The second is that the strlen()
function works by starting at the first element of the array and counting bytes until it
reaches a null character. In this case, the first null character doesn’t appear until several
bytes affer the end of the array. Where the first null character appears in uninitialized data
is essentially random, so you very well could get a different numeric result using this
program.

Also note that the length of the string in str before input is 0. That’s because an
uninitialized string object is automatically set to zero size.

This is the code for reading a line into an array:

cin.getline (charr, 20);

The dot notation indicates that the getline () function is a class method for the
istream class. (Recall that cin is an istream object.) As mentioned earlier, the first argu-
ment indicates the destination array, and the second argument is the array size, which
getline () used to avoid overrunning the array.

This is the code for reading a line into a string object:

getline(cin,str);

There is no dot notation, which indicates that this getline () is not a class method.
So it takes cin as an argument that tells it where to find the input. Also there isn’t an
argument for the size of the string because the string object automatically resizes to fit
the string.

So why is one getline () an istream class method and the other getline () not? The
istream class was part of C++ long before the string class was added. So the istream
design recognizes basic C++ types such as double and int, but it is ignorant of the
string type. Therefore, there are istream class methods for processing double, int, and
the other basic types, but there are no istream class methods for processing string
objects.

Because there are no istream class methods for processing string objects, you might
wonder why code like this works:

cin >> str; // read a word into the str string object

It turns out that code like the following does (in disguised notation) use a member
function of the istream class:
cin >> x; // read a value into a basic C++ type

But the string class equivalent uses a friend function (also in disguised notation) of
the string class.You’ll have to wait until Chapter 11 to see what a friend function is and

how this technique works. In the meantime, you can use cin and cout with string
objects and not worry about the inner workings.

Introducing the string Class

Other Forms of String Literals

C++, recall, has the wehar_t type in addition to char.And C++11 adds the charl6_t
and char32_t types. It’s possible to create arrays of these types and string literals of these
types. C++ uses the L, u, and U prefixes, respectively, for string literals of these types.
Here’s an example of how they can be used:

wchar_t title[] = L"Chief Astrogator"; // w_char string
charl6_t name[] = u"Felonia Ripova"; // char_16 string
char32_t car[] = U"Humber Super Snipe"; // char_ 32 string

C++11 also supports an encoding scheme for Unicode characters called UTF-8. In
this scheme a given character may be stored in anywhere from one 8-bit unit, or octet, to
four 8-bit units, depending on the numeric value. C++ uses the u8 prefix to indicate
string literals of that type.

Another C++11 addition is the raw string. In a raw string, characters simply stand for
themselves. For example, the sequence \n is not interpreted as representing the newline
character; instead, it is two ordinary characters, a backslash and an n, and it would display
as those two characters onscreen. As another example, you can use a simple " inside a
string instead of the more awkward \" we used in Listing 4.8. Of course, if you allow a "
inside a string literal, you no longer can use it to delimit the ends of a string. Therefore,
raw strings use " (and)" as delimiters, and they use an R prefix to identify them as raw
strings:

cout << R"(Jim "King" Tutt uses "\n" instead of endl.)" << '\n';

This would display the following:

Jim "King" Tutt uses \n instead of endl.

The standard string literal equivalent would be this:

cout << "Jim \"King\" Tutt uses \" \\n\" instead of endl." << '\n';

Here we had to use \\ to display \ because a single \ is interpreted as the first charac-
ter of an escape sequence.

If you press the Enter or Return key while typing a raw string, that not only moves the
cursor to the next line onscreen, it also places a carriage return character in the raw string.

‘What if you want to display the combination)" in a raw string? (Who wouldn’t?)
Won'’t the compiler interpret the first occurrence of)" as the end of the string? Yes, it
will. But the raw string syntax allows you to place additional characters between the
opening " and (.This implies that the same additional characters must appear between
the final) and ". So a raw string beginning with R"+* (must terminate with)+*".Thus,
the statement

cout << R"+*("(Who wouldn't?)", she whispered.)+*" << endl;

would display the following:

"(Who wouldn't?)", she whispered.

139

140

Chapter 4 Compound Types

In short, the default delimiters of " (and) " have been replaced with "+* (and) +*".
You can use any of the members of the basic character set as part of the delimiter other
than the space, the left parenthesis, the right parenthesis, the backslash, and control charac-
ters such as a tab or a newline.

The R prefix can be combined with the other string prefixes to produce raw strings of
wchar t and so on. It can be either the first or the last part of a compound prefix: Ru, UR,
and so on.

Now let’s go on to another compound type—the structure.

Introducing Structures

Suppose you want to store information about a basketball player. You might want to store
his or her name, salary, height, weight, scoring average, free-throw percentage, assists, and
so on.You'd like some sort of data form that could hold all this information in one unit.
An array won't do. Although an array can hold several items, each item has to be the same
type.That is, one array can hold 20 ints and another can hold 10 floats, but a single
array can’t store ints in some elements and f£loats in other elements.

The answer to your desire (the one about storing information about a basketball player)
is the C++ structure. A structure is a more versatile data form than an array because a single
structure can hold items of more than one data type. This enables you to unify your data
representation by storing all the related basketball information in a single structure vari-
able. If you want to keep track of a whole team, you can use an array of structures. The
structure type is also a stepping stone to that bulwark of C++ OOP, the class. Learning a
little about structures now takes you that much closer to the OOP heart of C++.

A structure is a user-definable type, with a structure declaration serving to define the
type’s data properties. After you define the type, you can create variables of that type.
Thus, creating a structure is a two-part process. First, you define a structure description
that describes and labels the different types of data that can be stored in a structure. Then
you can create structure variables, or, more generally, structure data objects, that follow the
description’s plan.

For example, suppose that Bloataire, Inc., wants to create a type to describe members
of its product line of designer inflatables. In particular, the type should hold the name of
the item, its volume in cubic feet, and its selling price. Here is a structure description that
meets those needs:

struct inflatable // structure declaration

{

char name[20];
float volume;
double price;

}i

The keyword struct indicates that the code defines the layout for a structure. The
identifier inflatable is the name, or tag, for this form; this makes inflatable the name

Introducing Structures

for the new type. Thus, you can now create variables of type inflatable just as you cre-
ate variables of type char or int. Next, between braces are the list of data types to be
held in the structure. Each list item is a declaration statement.You can use any of the
C++ types here, including arrays and other structures. This example uses an array of
char, which is suitable for storing a string, a £1oat, and a double. Each individual item in
the list is called a structure member, so the inflatable structure has three members (see
Figure 4.6). In short, the structure definition defines the characteristics of a type—in this
case, the inflatable type.

the struct the tag becomes the name
keyword for the new type

— ——

struct inflatable

{
opening and grl‘af‘t”amim@] ; } structure
: oat volume;
closing braces double pr‘ice; members

)
-~
terminates the structure declaration

Figure 4.6 Parts of a structure description.

After you have defined the structure, you can create variables of that type:

inflatable hat; // hat is a structure variable of type inflatable
inflatable woopie cushion; // type inflatable variable
inflatable mainframe; // type inflatable variable

If you’re familiar with C structures, you’ll notice (probably with pleasure) that C++
allows you to drop the keyword struct when you declare structure variables:

struct inflatable goose; // keyword struct required in C
inflatable vincent; // keyword struct not required in C++

In C++, the structure tag is used just like a fundamental type name. This change
emphasizes that a structure declaration defines a new type. It also removes omitting
struct from the list of curse-inducing errors.

Given that hat is type inflatable, you use the membership operator (.) to access
individual members. For example, hat . volume refers to the volume member of the struc-
ture, and hat .price refers to the price member. Similarly, vincent .price is the price
member of the vincent variable. In short, the member names enable you to access mem-
bers of a structure much as indices enable you to access elements of an array. Because the
price member is declared as type double, hat .price and vincent.price are both
equivalent to type double variables and can be used in any manner an ordinary type
double variable can be used. In short, hat is a structure, but hat .price is a double. By

141

142 Chapter 4 Compound Types

the way, the method used to access class member functions such as cin.getline () has its
origins in the method used to access structure member variables such as vincent .price.

Using a Structure in a Program

Now that we’ve covered some of the main features of structures, it’s time to put the ideas
together in a structure-using program. Listing 4.11 illustrates these points about a struc-
ture. Also it shows how to initialize one.

Listing 4.11 structur.cpp

// structur.cpp -- a simple structure
#include <iostreams>
struct inflatable // structure declaration
{

char name[20];

float volume;

double price;

int main ()

using namespace std;
inflatable guest =

{

"Glorious Gloria", // name value
1.88, // volume value
29.99 // price value

}; // guest is a structure variable of type inflatable
// It's initialized to the indicated values
inflatable pal =
{
"Audacious Arthur",
3.12,
32.99
}i // pal is a second variable of type inflatable
// NOTE: some implementations require using
// static inflatable guest =

cout << "Expand your guest list with " << guest.name;
cout << " and " << pal.name << "!\n";
// pal.name is the name member of the pal variable
cout << "You can have both for $";
cout << guest.price + pal.price << "!\n";
return 0;

Introducing Structures

Here is the output from the program in Listing 4.11:

Expand your guest list with Glorious Gloria and Audacious Arthur!
You can have both for $62.98!

Program Notes

One important matter related to the program in Listing 4.11 is where to place the struc-
ture declaration. There are two choices for structur.cpp.You could place the declaration
inside the main () function, just after the opening brace. The second choice, and the one
made here, is to place it outside and preceding main (). When a declaration occurs outside
any function, it’s called an external declaration. For this program, there 1s no practical differ-
ence between the two choices. But for programs consisting of two or more functions, the
difference can be crucial. The external declaration can be used by all the functions follow-
ing it, whereas the internal declaration can be used only by the function in which the
declaration is found. Most often, you want an external structure declaration so that all the
functions can use structures of that type (see Figure 4.7).

#include <iostream>
external declaration—can be using namespace std;
used in all functions in file struct parts

{
unsigned long part_number;
float part_cost;
void mail();
int main()
local declaration—can be
used only in this function struct perks

int key_number;
char car[12];

, }
type parts variable pér‘ts chicken;

type perks variable perks mr_blug;

void mail()

type parts variable parts studebaker;

can’t declare a type
perks variable here }

Figure 4.7 Local and external structure declarations.

Variables, too, can be defined internally or externally, with external variables shared
among functions. (Chapter 9, “Memory Models and Namespaces,” looks further into that
topic.) C++ practices discourage the use of external variables but encourage the use of

143

144

Chapter 4 Compound Types

external structure declarations. Also it often makes sense to declare symbolic constants
externally.
Next, notice the initialization procedure:

inflatable guest =

{

"Glorious Gloria", // name value
1.88, // volume value
29.99 // price value

}i

As with arrays, you use a comma-separated list of values enclosed in a pair of braces.
The program places one value per line, but you can place them all on the same line. Just
remember to separate items with commas:

inflatable duck = {"Daphne", 0.12, 9.98};

You can initialize each member of the structure to the appropriate kind of data. For
example, the name member is a character array, so you can initialize it to a string.

Each structure member is treated as a variable of that type. Thus, pal.price is a
double variable, and pal.name is an array of char. And when the program uses cout to
display pal.name, it displays the member as a string. By the way, because pal.name is a
character array, we can use subscripts to access individual characters in the array. For
example, pal.name [0] is the character A. But pal[0] is meaningless because pal is a
structure, not an array.

C++11 Structure Initialization
As with arrays, C++11 extends the features of list-initialization. The = sign is optional:

inflatable duck {"Daphne", 0.12, 9.98}; // can omit the = in C++11

Next, empty braces result in the individual members being set to 0. For example, the
following declaration results in mayor.volume and mayor.price being set to 0 and all the
bytes in mayor .name being set to 0:

inflatable mayor {};

Finally, narrowing is not allowed.

Can a Structure Use a string Class Member?

Can you use a string class object instead of a character array for the name member? That
is, can you declare a structure like this:

#include <string>
struct inflatable // structure definition
{

std::string name;

float volume;

double price;

}i

Introducing Structures

The answer is yes unless you are using an obsolete compiler that does not support ini-
tialization of structures with string class members.

Make sure that the structure definition has access to the std namespace.You can do
this by moving the using directive so that it is above the structure definition. The better
choice, as shown previously, is to declare name as having type std: :string.

Other Structure Properties

C++ makes user-defined types as similar as possible to built-in types. For example, you
can pass structures as arguments to a function, and you can have a function use a structure
as a return value. Also you can use the assignment operator (=) to assign one structure to
another of the same type. Doing so causes each member of one structure to be set to the
value of the corresponding member in the other structure, even if the member is an array.
This kind of assignment is called membenwise assignment. We’ll defer passing and returning
structures until we discuss functions in Chapter 7, “Functions: C++’s Programming Mod-
ules,” but we can take a quick look at structure assignment now. Listing 4.12 provides an
example.

Listing 4.12 assgn_st.cpp

// assgn_st.cpp -- assigning structures
#include <iostream>
struct inflatable
{
char name[20] ;
float volume;
double price;

int main()

using namespace std;
inflatable bouquet =
"sunflowers",
0.20,
12.49
inflatable choice;
cout << "bouquet: " << bouquet.name << " for $";
cout << bouquet.price << endl;

choice = bouquet; // assign one structure to another
cout << "choice: " << choice.name << " for $";

cout << choice.price << endl;

return 0;

145

146

Chapter 4 Compound Types

Here’s the output from the program in Listing 4.12:

bouquet: sunflowers for $12.49
choice: sunflowers for $12.49

As you can see, memberwise assignment is at work, for the members of the choice
structure are assigned the same values stored in the bouguet structure.

You can combine the definition of a structure form with the creation of structure
variables. To do so, you follow the closing brace with the variable name or names:

struct perks

{

int key_number;
char car([12];
} mr_smith, ms_jones; // two perks variables

You even can initialize a variable you create in this fashion:

struct perks

{

int key number;
char car[12];
} mr _glitz =
{
7, // value for mr _glitz.key number member
"Packard" // value for mr_glitz.car member

}i

However, keeping the structure definition separate from the variable declarations usu-
ally makes a program easier to read and follow.

Another thing you can do with structures is create a structure with no type name.You
do this by omitting a tag name while simultaneously defining a structure form and a

variable:

struct // no tag

{
int x; // 2 members
int y;

} position; // a structure variable

This creates one structure variable called position.You can access its members with
the membership operator, as in position.x, but there is no general name for the type.
You can’t subsequently create other variables of the same type.This book doesn’t use that
limited form of structure.

Aside from the fact that a C++ program can use the structure tag as a type name, C
structures have all the features discussed so far for C++ structures, apart from the C++11
changes. But C++ structures go further. Unlike C structures, for example, C++ structures
can have member functions in addition to member variables. But these more advanced
features most typically are used with classes rather than structures, so we’ll discuss them
when we cover classes, beginning with Chapter 10, “Objects and Classes.”

Introducing Structures

Arrays of Structures

The inflatable structure contains an array (the name array). It’s also possible to create
arrays whose elements are structures. The technique is exactly the same as for creating
arrays of the fundamental types. For example, to create an array of 100 inflatable struc-
tures, you could do the following:

inflatable gifts[100]; // array of 100 inflatable structures

This makes gifts an array of inflatables. Hence each element of the array, such as
gifts[0] or gifts[99],1s an inflatable object and can be used with the membership
operator:

cin >> gifts[0].volume; // use volume member of first struct
cout << gifts[99].price << endl; // display price member of last struct

Keep in mind that gifts itself is an array, not a structure, so constructions such as
gifts.price are not valid.

To initialize an array of structures, you combine the rule for initializing arrays (a brace-
enclosed, comma-separated list of values for each element) with the rule for structures (a
brace-enclosed, comma-separated list of values for each member). Because each element
of the array is a structure, its value is represented by a structure initialization. Thus, you
wind up with a brace-enclosed, comma-separated list of values, each of which itself is a
brace-enclosed, comma-separated list of values:

inflatable guests[2] = // initializing an array of structs

{

{"Bambi", 0.5, 21.99}, // first structure in array
{"Godzilla", 2000, 565.99} // next structure in array

}i

As usual, you can format this the way you like. For example, both initializations can be
on the same line, or each separate structure member initialization can get a line of its own.
Listing 4.13 shows a short example that uses an array of structures. Note that because
guests is an array of inflatable, guest [0] is type inflatable, so you can use it with

the dot operator to access a member of the inflatable structure.

Listing 4.13 arrstruc.cpp

// arrstruc.cpp -- an array of structures
#include <iostream>
struct inflatable
{
char name[20] ;
float volume;
double price;
}i

int main()

{

147

148

Chapter 4 Compound Types

using namespace std;
inflatable guests[2] = // initializing an array of structs
{
{"Bambi", 0.5, 21.99}, // first structure in array
{"Godzilla", 2000, 565.99} // next structure in array

}i

cout << "The guests " << guests[0] .name << " and " << guests[1l].name
<< "\nhave a combined volume of "
<< guests[0] .volume + guests[l].volume << " cubic feet.\n";
return 0;

Here is the output of the program in Listing 4.13:

The guests Bambi and Godzilla
have a combined volume of 2000.5 cubic feet.

Bit Fields in Structures

C++, like C, enables you to specify structure members that occupy a particular number
of bits. This can be handy for creating a data structure that corresponds, say, to a register
on some hardware device. The field type should be an integral or enumeration type (enu-
merations are discussed later in this chapter), and a colon followed by a number indicates
the actual number of bits to be used.You can use unnamed fields to provide spacing. Each
member is termed a bit field. Here’s an example:

struct torgle_register

{

unsigned int SN : 4; // 4 bits for SN value
unsigned int : 4; // 4 bits unused
bool goodIn : 1; // valid input (1 bit)

bool goodTorgle : 1; // successful torgling

}i

You can initialize the fields in the usual manner, and you use standard structure nota-
tion to access bit fields:

torgle register tr = { 14, true, false };
if (tr.goodIn) // if statement covered in Chapter 6
Bit fields are typically used in low-level programming. Often, using an integral type

and the bitwise operators listed in Appendix E,“Other Operators,” provides an alternative
approach.

Unions

Unions

A union 1s a data format that can hold different data types but only one type at a time.
That is, whereas a structure can hold, say, an int and a long and a double, a union can
hold an int ora long or a double.The syntax is like that for a structure, but the meaning
is different. For example, consider the following declaration:

union one4all

{
int int val;
long long val;

double double val;

}i

You can use a one4all variable to hold an int, a long, or a double, just as long as you
do so at different times:

one4all pail;

pail.int val = 15; // store an int

cout << pail.int val;

pail.double val = 1.38; // store a double, int value is lost
cout << pail.double val;

Thus, pail can serve as an int variable on one occasion and as a double variable at
another time. The member name identifies the capacity in which the variable is acting.
Because a union holds only one value at a time, it has to have space enough to hold its
largest member. Hence, the size of the union is the size of its largest member.

One use for a union is to save space when a data item can use two or more formats
but never simultaneously. For example, suppose you manage a mixed inventory of widg-
ets, some of which have an integer ID, and some of which have a string ID. In that case,
you could use the following:

struct widget

{

char brand[20];

int type;
union id // format depends on widget type
{
long id_num; // type 1 widgets
char id char([20]; // other widgets
} id_val;

}i
widget prize;

if (prize.type == 1) // if-else statement (Chapter 6)
cin >> prize.id val.id num; // use member name to indicate mode
else
cin >> prize.id val.id char;

149

150 Chapter 4 Compound Types

An anonymous union has no name; in essence, its members become variables that share
the same address. Naturally, only one member can be current at a time:

struct widget

{

char brand[20];

int type;
union // anonymous union
{
long id_num; // type 1 widgets

char id char([20]; // other widgets
}i
}i

widget prize;

if (prize.type == 1)

cin >> prize.id num;
else

cin >> prize.id char;

Because the union is anonymous, id_num and id_char are treated as two members of
prize that share the same address. The need for an intermediate identifier id_val is elim-
inated. It is up to the programmer to keep track of which choice is active.

Unions often (but not exclusively) are used to save memory space. That may not seem
that necessary in these days of gigabytes of RAM and terabytes of storage, but not all
C++ programs are written for such systems. C++ also is used for embedded systems, such
as the processors used to control a toaster oven, an MP3 player, or a Mars rover. In these
applications space may be at a premium. Also unions often are used when working with
operating systems or hardware data structures.

Enumerations

The C++ enum facility provides an alternative to const for creating symbolic constants. It
also lets you define new types but in a fairly restricted fashion. The syntax for enum
resembles structure syntax. For example, consider the following statement:

enum spectrum {red, orange, yellow, green, blue, violet, indigo, ultraviolet};
This statement does two things:

= It makes spectrum the name of a new type; spectrum is termed an enumeration,
much as a struct variable is called a structure.

= [t establishes red, orange, yellow, and so on, as symbolic constants for the integer
values 0—7.These constants are called enumerators.

Enumerations

By default, enumerators are assigned integer values starting with 0 for the first enu-
merator, 1 for the second enumerator, and so forth.You can override the default by
explicitly assigning integer values.You’ll see how later in this chapter.

You can use an enumeration name to declare a variable of the enumeration type:

spectrum band; // band a variable of type spectrum

An enumeration variable has some special properties, which we’ll examine now.
The only valid values that you can assign to an enumeration variable without a type
cast are the enumerator values used in defining the type. Thus, we have the following:

band = blue; // valid, blue is an enumerator
band = 2000; // invalid, 2000 not an enumerator

Thus, a spectrum variable is limited to just eight possible values. Some compilers issue
a compiler error if you attempt to assign an invalid value, whereas others issue a warning.
For maximum portability, you should regard assigning a non-enum value to an enum vari-
able as an error.

Only the assignment operator is defined for enumerations. In particular, arithmetic
operations are not defined:

band = orange; // valid
++band; // not valid, ++ discussed in Chapter 5
band = orange + red; // not valid, but a little tricky

However, some implementations do not honor this restriction. That can make it possi-
ble to violate the type limits. For example, if band has the value ultraviolet, or 7, then
++band, if valid, increments band to 8, which is not a valid value for a spectrum type.
Again, for maximum portability, you should adopt the stricter limitations.

Enumerators are of integer type and can be promoted to type int, but int types are
not converted automatically to the enumeration type:

int color = blue; // valid, spectrum type promoted to int
band = 3; // invalid, int not converted to spectrum
color = 3 + red; // valid, red converted to int

Note that in this example, even though 3 corresponds to the enumerator green,
assigning 3 to band is a type error. But assigning green to band is fine because they are
both type spectrum. Again, some implementations do not enforce this restriction. In the
expression 3 + red, addition isn’t defined for enumerators. However, red is converted to
type int, and the result is type int. Because of the conversion from enumeration to int
in this situation, you can use enumerations in arithmetic expressions to combine them
with ordinary integers, even though arithmetic isn’t defined for enumerations themselves.

The earlier example

band = orange + red; // not valid, but a little tricky

151

152

Chapter 4 Compound Types

fails for a somewhat involved reason. It is true that the + operator is not defined for enu-
merators. But it is also true that enumerators are converted to integers when used in
arithmetic expressions, so the expression orange + red gets converted to 1 + 0, which is
a valid expression. But it is of type int and hence cannot be assigned to the type
spectrum variable band.

You can assign an int value to an enum, provided that the value is valid and that you
use an explicit type cast:

band = spectrum(3); // typecast 3 to type spectrum

What if you try to type cast an inappropriate value? The result is undefined, mean-
ing that the attempt won’t be flagged as an error but that you can’t rely on the value of
the result:

band = spectrum(40003); // undefined

(See the section “Value Ranges for Enumerations,” later in this chapter for a discussion
of what values are and are not appropriate.)

As you can see, the rules governing enumerations are fairly restrictive. In practice, enu-
merations are used more often as a way of defining related symbolic constants than as a
means of defining new types. For example, you might use an enumeration to define sym-
bolic constants for a switch statement. (See Chapter 6, “Branching Statements and Logi-
cal Operators,” for an example.) If you plan to use just the constants and not create
variables of the enumeration type, you can omit an enumeration type name, as in this
example:

enum {red, orange, yellow, green, blue, violet, indigo, ultraviolet};

Setting Enumerator Values
You can set enumerator values explicitly by using the assignment operator:
enum bits{one = 1, two = 2, four = 4, eight = 8};
The assigned values must be integers.You also can define just some of the enumerators
explicitly:
enum bigstep{first, second = 100, third};
In this case, first is 0 by default. Subsequent uninitialized enumerators are larger by

one than their predecessors. So, third would have the value 101.
Finally, you can create more than one enumerator with the same value:

enum {zero, null = 0, one, numero uno = 1};

Here, both zero and null are 0, and both one and numero_uno are 1. In earlier ver-
sions of C++, you could assign only int values (or values that promote to int) to enu-
merators, but that restriction has been removed so that you can use type long or even
long long values.

Pointers and the Free Store

Value Ranges for Enumerations

Originally, the only valid values for an enumeration were those named in the declaration.
However, C++ has expanded the list of valid values that can be assigned to an enumera-
tion variable through the use of a type cast. Each enumeration has a range, and you can
assign any integer value in the range, even if it’s not an enumerator value, by using a type
cast to an enumeration variable. For example, suppose that bits and myflag are defined
this way:

enum bits{one = 1, two = 2, four = 4, eight = 8};

bits myflag;

In this case, the following is valid:

myflag = bits(6); // valid, because 6 is in bits range

Here 6 is not one of the enumerations, but it lies in the range the enumerations define.

The range is defined as follows. First, to find the upper limit, you take the largest enu-
merator value. Then you find the smallest power of two greater than this largest value and
subtract one; the result is the upper end of the range. (For example, the largest bigstep
value, as previously defined, is 101. The smallest power of two greater than this is 128, so
the upper end of the range is 127.) Next, to find the lower limit, you find the smallest
enumerator value. If it is O or greater, the lower limit for the range is 0. If the smallest
enumerator is negative, you use the same approach as for finding the upper limit but toss
in a minus sign. (For example, if the smallest enumerator is -6, the next power of two
[times a minus sign] is -8, and the lower limit is -7.)

The idea is that the compiler can choose how much space to use to hold an enumera-
tion. It might use 1 byte or less for an enumeration with a small range and 4 bytes for an
enumeration with type long values.

C++11 extends enumerations with a form called the scoped enumeration. Chapter 10
discusses this form briefly in the section “Class Scope.”

Pointers and the Free Store

The beginning of Chapter 3 mentions three fundamental properties of which a computer
program must keep track when it stores data.To save the book the wear and tear of your
thumbing back to that chapter, here are those properties again:

= Where the information is stored

= What value is kept there

= What kind of information is stored

You've used one strategy for accomplishing these ends: defining a simple variable. The
declaration statement provides the type and a symbolic name for the value. It also causes
the program to allocate memory for the value and to keep track of the location internally.

153

154 Chapter 4 Compound Types

Let’s look at a second strategy now, one that becomes particularly important in devel-
oping C++ classes. This strategy is based on pointers, which are variables that store
addresses of values rather than the values themselves. But before discussing pointers, let’s
talk about how to explicitly find addresses for ordinary variables.You just apply the
address operator, represented by &, to a variable to get its location; for example, if home is a
variable, ghome is its address. Listing 4.14 demonstrates this operator.

Listing 4.14 address.cpp

// address.cpp -- using the & operator to find addresses
#include <iostreams>
int main()
{
using namespace std;
int donuts = 6;
double cups = 4.5;

cout << "donuts value = " << donuts;

cout << " and donuts address = " << &donuts << endl;
// NOTE: you may need to use unsigned (&donuts)
// and unsigned (&cups)

cout << "cups value = " << cups;
cout << " and cups address = " << &cups << endl;
return 0;

Here is the output from the program in Listing 4.14 on one system:

donuts value = 6 and donuts address = 0x0065£d40
cups value = 4.5 and cups address = 0x0065fd44

The particular implementation of cout shown here uses hexadecimal notation when
displaying address values because that is the usual notation used to specify a memory
address. (Some implementations use base 10 notation instead.) Our implementation stores
donuts at a lower memory location than cups.The difference between the two addresses
is 0x0065fd44 - 0x0065£d40, or 4. This makes sense because donuts is type int, which
uses 4 bytes. Different systems, of course, will give different values for the address. Also
some may store cups first, then donuts, giving a difference of 8 bytes because cups is
double. And some may not even use adjacent locations.

Using ordinary variables, then, treats the value as a named quantity and the location as
a derived quantity. Now let’s look at the pointer strategy, one that is essential to the C++
programming philosophy of memory management. (See the following sidebar, “Pointers
and the C++ Philosophy.”)

Pointers and the Free Store

Pointers and the C++ Philosophy

Object-oriented programming differs from traditional procedural programming in that OOP
emphasizes making decisions during runtime instead of during compile time. Runtime
means while a program is running, and compile time means when the compiler is putting a
program together. A runtime decision is like, when on vacation, choosing what sights to see
depending on the weather and your mood at the moment, whereas a compile-time decision
is more like adhering to a preset schedule, regardless of the conditions.

Runtime decisions provide the flexibility to adjust to current circumstances. For example,
consider allocating memory for an array. The traditional way is to declare an array. To
declare an array in C++, you have to commit yourself to a particular array size. Thus, the
array size is set when the program is compiled; it is a compile-time decision. Perhaps you
think an array of 20 elements is sufficient 80% of the time but that occasionally the pro-
gram will need to handle 200 elements. To be safe, you use an array with 200 elements.
This results in your program wasting memory most of the time it's used. OOP tries to make
a program more flexible by delaying such decisions until runtime. That way, after the pro-
gram is running, you can tell it you need only 20 elements one time or that you need 205
elements another time.

In short, with OOP you would like to make the array size a runtime decision. To make this
approach possible, the language has to allow you to create an array—or the equivalent—
while the program runs. The C++ method, as you soon see, involves using the keyword new
to request the correct amount of memory and using pointers to keep track of where the
newly allocated memory is found.

Making runtime decisions is not unique to OOR But C++ makes writing the code a bit more
straightforward than does C.

The new strategy for handling stored data switches things around by treating the loca-
tion as the named quantity and the value as a derived quantity. A special type of variable—
the pointer—holds the address of a value. Thus, the name of the pointer represents the
location. Applying the * operator, called the indirect value or the dereferencing operator,
yields the value at the location. (Yes, this is the same * symbol used for multiplication;
C++ uses the context to determine whether you mean multiplication or dereferencing.)
Suppose, for example, that manly is a pointer. In that case, manly represents an address, and
*manly represents the value at that address. The combination *manly becomes equivalent
to an ordinary type int variable. Listing 4.15 demonstrates these ideas. It also shows how
to declare a pointer.

Listing 4.15 pointer.cpp

// pointer.cpp -- our first pointer variable
#include <iostreams>
int main()
{
using namespace std;
int updates = 6; // declare a variable
int * p updates; // declare pointer to an int

155

156 Chapter 4 Compound Types

p_updates = &updates; // assign address of int to pointer

// express values two ways
cout << "Values: updates = " << updates;
cout << ", *p updates = " << *p updates << endl;

// express address two ways
cout << "Addresses: &updates = " << &updates;
cout << ", p updates = " << p updates << endl;

// use pointer to change value
*p_updates = *p_updates + 1;
cout << "Now updates = " << updates << endl;
return 0;

Here is the output from the program in Listing 4.15:
Values: updates = 6, *p updates = 6
Addresses: &updates = 0x0065fd48, p updates = 0x0065£d48
Now updates = 7

As you can see, the int variable updates and the pointer variable p_updates are just
two sides of the same coin.The updates variable represents the value as primary and uses
the & operator to get the address, whereas the p_updates variable represents the address as
primary and uses the * operator to get the value (see Figure 4.8). Because p_updates
points to updates, *p_updates and updates are completely equivalent.You can use
*p_updates exactly as you would use a type int variable. As the program in Listing 4.15
shows, you can even assign values to *p_updates. Doing so changes the value of the
pointed-to value, updates.

int jumbo = 23;
int * pe = &jumbo;

These are These are
the same. 1 | the same.
jumbo &jumbo

*pe pe
value address
23 0x2ac8

Figure 4.8 Two sides of a coin.

Pointers and the Free Store

Declaring and Initializing Pointers

Let’s examine the process of declaring pointers. A computer needs to keep track of the
type of value to which a pointer refers. For example, the address of a char typically looks
the same as the address of a double, but char and double use different numbers of bytes
and different internal formats for storing values. Therefore, a pointer declaration must
specify what type of data to which the pointer points.

For example, the preceding example has this declaration:

int * p updates;

This states that the combination * p_updates is type int. Because you use the * oper-
ator by applying it to a pointer, the p_updates variable itself must be a pointer. We say that
p_updates points to type int.We also say that the type for p_updates is pointer-to-int
or, more concisely, int *.To repeat: p_updates is a pointer (an address), and *p_updates
is an int and not a pointer (see Figure 4.9).

Memory address Variable name
— 1000 12 ducks
1002 birfldog
points to
1004 ducks
1006 1000 birddog
—

1008

1010

1012

1014

1016
int ducks = 12; int *birddog = &ducks;
creates ducks variable, stores creates birddog variable, stores
the value 12 in the variable the address of ducks in the variable

Figure 4.9 Pointers store addresses.

Incidentally, the use of spaces around the * operator are optional. Traditionally, C pro-
grammers have used this form:

int *ptr;
This accentuates the idea that the combination *ptr is a type int value. Many C++
programmers, on the other hand, use this form:

int* ptr;

157

158

Chapter 4 Compound Types

This emphasizes the idea that int* is a type, pointer-to-int. Where you put the spaces
makes no difference to the compiler.You could even do this:

int*ptr;

Be aware, however, that the following declaration creates one pointer (p1) and one
ordinary int (p2):
int* pl, p2;

You need an * for each pointer variable name.

Note
In C++, the combination int * is a compound type, pointer-to-int.

You use the same syntax to declare pointers to other types:

double * tax ptr; // tax ptr points to type double
char * str; // str points to type char

Because you declare tax_ptr as a pointer-to-double, the compiler knows that
*tax_ptr is a type double value.That is, it knows that *tax_ptr represents a number
stored in floating-point format that occupies (on most systems) 8 bytes. A pointer variable
is never simply a pointer. It is always a pointer to a specific type. tax_ptr is type pointer-
to-double (or type double *),and str is type pointer-to-char (or char *).Although
both are pointers, they are pointers of two different types. Like arrays, pointers are based
on other types.

Note that whereas tax_ptr and str point to data types of two different sizes, the two
variables tax_ptr and str themselves are typically the same size. That is, the address of a
char is the same size as the address of a double, much as 1016 might be the street address
for a department store, whereas 1024 could be the street address of a small cottage. The
size or value of an address doesn’t really tell you anything about the size or kind of vari-
able or building you find at that address. Usually, addresses require 2 or 4 bytes, depending
on the computer system. (Some systems might have larger addresses, and a system can use
different address sizes for different types.)

You can use a declaration statement to initialize a pointer. In that case, the pointer, not
the pointed-to value, is initialized. That is, the following statements set pt and not *pt to
the value &higgens:
int higgens = 5;
int * pt = &higgens;

Listing 4.16 demonstrates how to initialize a pointer to an address.

Listing 4.16 init ptr.cpp

// init_ptr.cpp -- initialize a pointer
#include <iostream>
int main()

{

Pointers and the Free Store

using namespace std;
int higgens = 5;
int * pt = &higgens;

cout << "Value of higgens = " << higgens

<< "; Address of higgens = " << &higgens << endl;
cout << "Value of *pt = " << *pt

<< "; Value of pt = " << pt << endl;
return 0;

Here is some sample output from the program in Listing 4.16:

Value of higgens = 5; Address of higgens = 0012FED4
Value of *pt = 5; Value of pt = 0012FED4

You can see that the program initializes pt, not *pt, to the address of higgens. (Your
system most likely will show different values for the addresses and may display them in a
different format.)

Pointer Danger

Danger awaits those who incautiously use pointers. One extremely important point is that
when you create a pointer in C++, the computer allocates memory to hold an address,
but it does not allocate memory to hold the data to which the address points. Creating
space for the data involves a separate step. Omitting that step, as in the following, is an
invitation to disaster:

long * fellow; // create a pointer-to-long
xfellow = 223323; // place a value in never-never land

Sure, fellow is a pointer. But where does it point? The code failed to assign an address
to fellow. So where is the value 223323 placed? We can’t say. Because fellow wasn't ini-
tialized, it could have any value. Whatever that value is, the program interprets it as the
address at which to store 223323. If fellow happens to have the value 1200, then the
computer attempts to place the data at address 1200, even if that happens to be an address
in the middle of your program code. Chances are that wherever fellow points, that is not
where you want to put the number 223323.This kind of error can produce some of the
most insidious and hard-to-trace bugs.

Caution

Pointer Golden Rule: Always initialize a pointer to a definite and appropriate address before
you apply the dereferencing operator (*) to it.

159

160

Chapter 4 Compound Types

Pointers and Numbers

Pointers are not integer types, even though computers typically handle addresses as inte-
gers. Conceptually, pointers are distinct types from integers. Integers are numbers you can
add, subtract, divide, and so on. But a pointer describes a location, and it doesn’t make
sense, for example, to multiply two locations by each other. In terms of the operations you
can perform with them, pointers and integers are different from each other. Consequently,
you can’t simply assign an integer to a pointer:

int * pt;

pt = 0xB8000000; // type mismatch

Here, the left side is a pointer to int, so you can assign it an address, but the right side
is just an integer. You might know that 0xB8000000 is the combined segment-offset
address of video memory on your aging computer system, but nothing in the statement
tells the program that this number is an address. C prior to C99 lets you make assignments
like this. But C++ more stringently enforces type agreement, and the compiler will give
you an error message saying you have a type mismatch. If you want to use a numeric
value as an address, you should use a type cast to convert the number to the appropriate
address type:
int * pt;
pt = (int *) 0xB8000000; // types now match

Now both sides of the assignment statement represent addresses of integers, so the
assignment is valid. Note that just because it 1s the address of a type int value doesn’t
mean that pt itself is type int. For example, one might have a platform for which type
int is a 2-byte value and the addresses are 4-byte values.

Pointers have some other interesting properties that we’ll discuss as they become rele-
vant. Meanwhile, let’s look at how pointers can be used to manage runtime allocation of
memory space.

Allocating Memory with new

Now that you have a feel for how pointers work, let’s see how they can implement the
important technique of allocating memory as a program runs. So far, you’ve initialized
pointers to the addresses of variables; the variables are named memory allocated during
compile time, and each pointer merely provides an alias for memory you could access
directly by name anyway. The true worth of pointers comes into play when you allocate
unnamed memory during runtime to hold values. In this case, pointers become the only
access to that memory. In C, you can allocate memory with the library function
malloc ().You can still do so in C++, but C++ also has a better way: the new operator.

Let’s try out this new technique by creating unnamed runtime storage for a type int
value and accessing the value with a pointer. The key is the C++ new operator.You tell
new for what data type you want memory; new finds a block of the correct size and

Pointers and the Free Store

returns the address of the block.You assign this address to a pointer, and you’re in business.
Here’s an example of the technique:

int * pn = new int;

The new int part tells the program you want some new storage suitable for holding an
int.The new operator uses the type to figure out how many bytes are needed. Then it
finds the memory and returns the address. Next, you assign the address to pn, which is
declared to be of type pointer-to-int. Now pn is the address and *pn is the value stored
there. Compare this with assigning the address of a variable to a pointer:
int higgens;
int * pt = &higgens;

In both cases (pn and pt), you assign the address of an int to a pointer. In the second
case, you can also access the int by name: higgens. In the first case, your only access is via
the pointer. That raises a question: Because the memory to which pn points lacks a name,
what do you call it? We say that pn points to a data object. This is not “object” in the sense
of “object-oriented programming”; it’s just “object” in the sense of “thing.” The term “data
object” is more general than the term “variable” because it means any block of memory
allocated for a data item. Thus, a variable is also a data object, but the memory to which
pn points is not a variable. The pointer method for handling data objects may seem more
awkward at first, but it offers greater control over how your program manages memory.

The general form for obtaining and assigning memory for a single data object, which
can be a structure as well as a fundamental type, is this:

typeName * pointer name = new typeName;
You use the data type twice: once to specify the kind of memory requested and once
to declare a suitable pointer. Of course, if you've already declared a pointer of the correct

type, you can use it rather than declare a new one. Listing 4.17 illustrates using new with
two different types.

Listing 4.17 use_new.cpp

// use new.cpp -- using the new operator
#include <iostream>
int main()
{
using namespace std;
int nights = 1001;
int * pt = new int; // allocate space for an int
*pt = 1001; // store a value there

cout << "nights value = ";
cout << nights << ": location " << &nights << endl;
cout << "int ";

cout << "value = " << *pt << ": location = " << pt << endl;

161

162

Chapter 4 Compound Types

double * pd = new double; // allocate space for a double
*pd = 10000001.0; // store a double there

cout << "double ";

cout << "value = " << *pd << ": location = " << pd << endl;
cout << "location of pointer pd: " << &pd << endl;

cout << "size of pt = " << sizeof(pt);

cout << ": size of *pt = " << sizeof (*pt) << endl;

cout << "size of pd = " << sizeof pd;

cout << ": size of *pd = " << sizeof (*pd) << endl;

return 0;

Here is the output from the program in Listing 4.17:

nights value = 1001: location 0028F7F8

int value = 1001: location = 00033A98
double value = 1e+007: location = 000339B8
location of pointer pd: 0028F7FC

size of pt = 4: size of *pt = 4

size of pd = 4: size of *pd = 8

Of course, the exact values for the memory locations differ from system to system.

Program Notes

The program in Listing 4.17 uses new to allocate memory for the type int and type
double data objects. This occurs while the program is running. The pointers pt and pd
point to these two data objects. Without them, you cannot access those memory locations.
With them, you can use *pt and *pd just as you would use variables.You assign values to
*pt and *pd to assign values to the new data objects. Similarly, you print *pt and *pd to
display those values.

The program in Listing 4.17 also demonstrates one of the reasons you have to declare
the type a pointer points to. An address in itself reveals only the beginning address of the
object stored, not its type or the number of bytes used. Look at the addresses of the two
values. They are just numbers with no type or size information. Also note that the size of a
pointer-to-int is the same as the size of a pointer-to-double. Both are just addresses. But
because use_new. cpp declares the pointer types, the program knows that *pd is a double
value of 8 bytes, whereas *pt is an int value of 4 bytes. When use_new. cpp prints the
value of *pd, cout can tell how many bytes to read and how to interpret them.

Another point to note is that typically new uses a different block of memory than do
the ordinary variable definitions that we have been using. Both the variables nights and
pd have their values stored in a memory region called the stack, whereas the memory allo-
cated by new is in a region called the heap or free store. Chapter 9 discusses this a bit further.

Pointers and the Free Store

Out of Memory?

It’s possible that a computer might not have sufficient memory available to satisfy a new
request. When that is the case, new normally responds by throwing an exception, an error-
handling technique discussed in Chapter 15, “Friends, Exceptions, and More.” In older imple-
mentations new returns the value 0. In C++, a pointer with the value 0 is called the null
pointer. C++ guarantees that the null pointer never points to valid data, so it is often used to
indicate failure for operators or functions that otherwise return usable pointers. The if
statement, discussed in Chapter 6, helps you deal with this possibility. For now, the impor-
tant point is that C++ provides the tools to detect and respond to allocation failures.

Freeing Memory with delete

Using new to request memory when you need it is just the more glamorous half of the
C++ memory-management package. The other half is the delete operator, which enables
you to return memory to the memory pool when you are finished with it. That is an
important step toward making the most eftective use of memory. Memory that you
return, or free, can then be reused by other parts of the program.You use delete by fol-
lowing it with a pointer to a block of memory originally allocated with new:

int * ps = new int; // allocate memory with new

Coe // use the memory

delete ps; // free memory with delete when done

This removes the memory to which ps points; it doesn’t remove the pointer ps itself.
You can reuse ps, for example, to point to another new allocation.You should always bal-
ance a use of new with a use of delete; otherwise, you can wind up with a memory leak—
that is, memory that has been allocated but can no longer be used. If a memory leak
grows too large, it can bring a program seeking more memory to a halt.

You should not attempt to free a block of memory that you have previously freed. The
C++ Standard says the result of such an attempt is undefined, meaning that the conse-
quences could be anything. Also you cannot use delete to free memory created by
declaring ordinary variables:

int * ps = new int; // ok

delete ps; // ok

delete ps; // not ok now

int jugs = 5; // ok

int * pi = &jugs; // ok

delete pi; // not allowed, memory not allocated by new
Caution

You should use delete only to free memory allocated with new. However, it is safe to apply
delete to a null pointer.

163

164

Chapter 4 Compound Types

Note that the critical requirement for using delete is to use it with memory allocated
by new.This doesn’t mean you have to use the same pointer you used with new; instead,
you have to use the same address:

int * ps = new int; // allocate memory
int * pg = ps; // set second pointer to same block
delete pq; // delete with second pointer

Ordinarily, you won't create two pointers to the same block of memory because that
raises the possibility that you will mistakenly try to delete the same block twice. But as
you’ll soon see, using a second pointer does make sense when you work with a function
that returns a pointer.

Using new to Create Dynamic Arrays

If all a program needs is a single value, you might as well declare a simple variable because
that is simpler, if less impressive, than using new and a pointer to manage a single small data
object. More typically, you use new with larger chunks of data, such as arrays, strings, and
structures. This is where new is useful. Suppose, for example, youre writing a program that
might or might not need an array, depending on information given to the program while
it is running. If you create an array by declaring it, the space is allocated when the pro-
gram is compiled. Whether or not the program finally uses the array, the array is there,
using up memory. Allocating the array during compile time is called static binding, meaning
that the array is built in to the program at compile time. But with new, you can create an
array during runtime if you need it and skip creating the array if you don’t need it. Or you
can select an array size after the program is running. This is called dynamic binding, meaning
that the array is created while the program is running. Such an array is called a dynamic
array. With static binding, you must specify the array size when you write the program.
With dynamic binding, the program can decide on an array size while the program runs.

For now, we’ll look at two basic matters concerning dynamic arrays: how to use C++’s
new operator to create an array and how to use a pointer to access array elements.

Creating a Dynamic Array with new

It’s easy to create a dynamic array in C++; you tell new the type of array element and
number of elements you want. The syntax requires that you follow the type name with
the number of elements, in brackets. For example, if you need an array of 10 ints, you
use this:

int * psome = new int [10]; // get a block of 10 ints

The new operator returns the address of the first element of the block. In this example,
that value is assigned to the pointer psome.

As always, you should balance the call to new with a call to delete when the program
finishes using that block of memory. However, using new with brackets to create an array
requires using an alternative form of delete when freeing the array:

delete [] psome; // free a dynamic array

Pointers and the Free Store

The presence of the brackets tells the program that it should free the whole array, not
just the element pointed to by the pointer. Note that the brackets are between delete
and the pointer. If you use new without brackets, you should use delete without brackets.
If you use new with brackets, you should use delete with brackets. Earlier versions of
C++ might not recognize the bracket notation. For the ANSI/ISO Standard, however, the
effect of mismatching new and delete forms is undefined, meaning that you can’t rely on
some particular behavior. Here’s an example:
int * pt = new int;
short * ps = new short [500];
delete [] pt; // effect is undefined, don't do it
delete ps; // effect is undefined, don't do it

In short, you should observe these rules when you use new and delete:

= Don'’t use delete to free memory that new didn’t allocate.

= Don'’t use delete to free the same block of memory twice in succession.
= Use delete [] if you used new [] to allocate an array.

= Use delete (no brackets) if you used new to allocate a single entity.

= It’s safe to apply delete to the null pointer (nothing happens).

Now let’s return to the dynamic array. Note that psome is a pointer to a single int, the
first element of the block. It’s your responsibility to keep track of how many elements are
in the block.That is, because the compiler doesn’t keep track of the fact that psome points
to the first of 10 integers, you have to write your program so that it keeps track of the
number of elements.

Actually, the program does keep track of the amount of memory allocated so that it
can be correctly freed at a later time when you use the delete [] operator. But that
information isn’t publicly available; you can’t use the sizeof operator, for example, to find
the number of bytes in a dynamically allocated array.

The general form for allocating and assigning memory for an array is this:

type name * pointer name = new type name [num elements];

Invoking the new operator secures a block of memory large enough to hold
num_elements elements of type type name, with pointer name pointing to the first ele-
ment. As you’re about to see, you can use pointer name in many of the same ways you
can use an array name.

Using a Dynamic Array

After you create a dynamic array, how do you use it? First, think about the problem con-
ceptually. The following statement creates a pointer, psome, that points to the first element
of a block of 10 int values:

int * psome = new int [10]; // get a block of 10 ints

165

166

Chapter 4 Compound Types

Think of it as a finger pointing to that element. Suppose an int occupies 4 bytes.
Then, by moving your finger 4 bytes in the correct direction, you can point to the second
element. Altogether, there are 10 elements, which is the range over which you can move
your finger. Thus, the new statement supplies you with all the information you need to
identify every element in the block.

Now think about the problem practically. How do you access one of these elements?
The first element is no problem. Because psome points to the first element of the array,
*psome is the value of the first element. That leaves nine more elements to access. The sim-
plest way to access the elements may surprise you if you haven’t worked with C: Just use
the pointer as if it were an array name. That is, you can use psome [0] instead of *psome for
the first element, psome [1] for the second element, and so on. It turns out to be very sim-
ple to use a pointer to access a dynamic array, even if it may not immediately be obvious
why the method works. The reason you can do this is that C and C++ handle arrays inter-
nally by using pointers anyway. This near equivalence of arrays and pointers is one of the
beauties of C and C++. (It’s also sometimes a problem, but that’s another story.) You’ll
learn more about this equivalence in a moment. First, Listing 4.18 shows how you can use
new to create a dynamic array and then use array notation to access the elements. It also
points out a fundamental difference between a pointer and a true array name.

Listing 4.18 arraynew.cpp

// arraynew.cpp -- using the new operator for arrays
#include <iostream>
int main()
{
using namespace std;
double * p3 = new double [3]; // space for 3 doubles

p3[0] = 0.2; // treat p3 like an array name
p3[1] = 0.5;
p3[2] = 0.8;

cout << "p3[1l] is " << p3[1] << ".\n";

p3 = p3 + 1; // increment the pointer
cout << "Now p3[0] is " << p3[0] << " and ";

cout << "p3[1] is " << p3[1] << ".\n";

p3 =p3 - 1; // point back to beginning
delete [] p3; // free the memory
return 0;

Here is the output from the program in Listing 4.18:

p3[1] is 0.5.
Now p3[0] is 0.5 and p3[1] is 0.8.

Pointers, Arrays, and Pointer Arithmetic

As you can see, arraynew. cpp uses the pointer p3 as if it were the name of an array,
with p3[0] as the first element, and so on.The fundamental difference between an array
name and a pointer appears in the following line:

p3 = p3 + 1; // okay for pointers, wrong for array names

You can’t change the value of an array name. But a pointer is a variable, hence you can
change its value. Note the effect of adding 1 to p3.The expression p3 [0] now refers to
the former second element of the array. Thus, adding 1 to p3 causes it to point to the sec-
ond element instead of the first. Subtracting one takes the pointer back to its original
value so that the program can provide delete [] with the correct address.

The actual addresses of consecutive ints typically differ by 2 or 4 bytes, so the fact that
adding 1 to p3 gives the address of the next element suggests that there is something spe-
cial about pointer arithmetic. There is.

Pointers, Arrays, and Pointer Arithmetic

The near equivalence of pointers and array names stems from pointer arithmetic and how
C++ handles arrays internally. First, let’s check out the arithmetic. Adding one to an inte-
ger variable increases its value by one, but adding one to a pointer variable increases its
value by the number of bytes of the type to which it points. Adding one to a pointer to
double adds 8 to the numeric value on systems with 8-byte double, whereas adding one
to a pointer-to-short adds two to the pointer value if short is 2 bytes. Listing 4.19
demonstrates this amazing point. It also shows a second important point: C++ interprets
the array name as an address.

Listing 4.19 addpntrs.cpp

// addpntrs.cpp -- pointer addition

#include <iostream>

int main()

{
using namespace std;
double wages([3] = {10000.0, 20000.0, 30000.0};
short stacks[3] = {3, 2, 1};

// Here are two ways to get the address of an array
double * pw = wages; // name of an array = address
short * ps = &stacks[0]; // or use address operator
// with array element
cout << "pw = " << pw << ", *pw = " << *pw << endl;
pw = pw + 1;
cout << "add 1 to the pw pointer:\n";

cout << "pw = " << pw << ", *pw = " << *pw << "\n\n";

167

168 Chapter 4 Compound Types

cout << "ps = " << ps << ", *ps = " << *ps << endl;
ps = ps + 1;
cout << "add 1 to the ps pointer:\n";

cout << "ps = " << ps << ", *ps = " << *ps << "\n\n";

cout << "access two elements with array notation\n";

cout << "stacks[0] = " << stacks[0]

<< ", stacks[l] = " << stacks[l] << endl;
cout << "access two elements with pointer notation\n";
cout << "*stacks = " << *gstacks

<< ", *(stacks + 1) = " << *(stacks + 1) << endl;
cout << sizeof (wages) << " = size of wages array\n";
cout << sizeof (pw) << " = size of pw pointer\n";
return 0;

Here is the output from the program in Listing 4.19:

pw = 0x28ccf0, *pw = 10000
add 1 to the pw pointer:
pw = 0x28ccf8, *pw = 20000

ps = 0x28ccea, *ps = 3
add 1 to the ps pointer:
ps = 0x28ccec, *ps = 2

access two elements with array notation
stacks[0] = 3, stacks[l] = 2

access two elements with pointer notation
*stacks = 3, *(stacks + 1) = 2

24 = size of wages array

4 = size of pw pointer

Program Notes

In most contexts, C++ interprets the name of an array as the address of its first element.
Thus, the following statement makes pw a pointer to type double and then initializes pw
to wages, which is the address of the first element of the wages array:

double * pw = wages;

For wages, as with any array, we have the following equality:

wages = &wages[0] = address of first element of array

Just to show that this is no jive, the program explicitly uses the address operator in the
expression &stacks [0] to initialize the ps pointer to the first element of the stacks array.

Pointers, Arrays, and Pointer Arithmetic

Next, the program inspects the values of pw and *pw. The first is an address, and the
second is the value at that address. Because pw points to the first element, the value dis-
played for *pw is that of the first element, 10000. Then the program adds one to pw. As
promised, this adds eight to the numeric address value because double on this system is 8
bytes. This makes pw equal to the address of the second element. Thus, *pw is now 20000,
the value of the second element (see Figure 4.10). (The address values in the figure are
adjusted to make the figure clearer.)

double wages[3] = {10000.0, 20000.0, 30000.0};
short stacks[3] = {8, 2, 1};

double * pw = wages;

short * ps = &stacks[0];

l10000.0 [20000.0 [30000.0 3]2]1|

Address: 100 108 116 124126 128
pw (pw + 1) ps (ps + 1)
pw points to type double, so ps points to type short, so
adding 1 to pw changes its adding 1 to ps changes its
value by 8 bytes. value by 2 bytes.

Figure 4.10 Pointer addition.

After this, the program goes through similar steps for ps. This time, because ps points
to type short and because short is 2 bytes, adding 1 to the pointer increases its value by
2 (0x28ccea + 2 = 0x28ccec in hexadecimal). Again, the result is to make the pointer
point to the next element of the array.

Note

Adding one to a pointer variable increases its value by the number of bytes of the type to
which it points.

Now consider the array expression stacks [1].The C++ compiler treats this expres-
sion exactly as if you wrote it as * (stacks + 1).The second expression means calculate
the address of the second element of the array and then find the value stored there. The
end result is precisely what stacks [1] means. (Operator precedence requires that you use
the parentheses. Without them, 1 would be added to *stacks instead of to stacks.)

The program output demonstrates that * (stacks + 1) and stacks[1] are the same.
Similarly, * (stacks + 2) is the same as stacks [2]. In general, wherever you use array
notation, C++ makes the following conversion:

arrayname [i] becomes * (arrayname + i)

169

170

Chapter 4 Compound Types

And if you use a pointer instead of an array name, C++ makes the same conversion:

pointername [i] becomes * (pointername + i)

Thus, in many respects you can use pointer names and array names in the same way.
You can use the array brackets notation with either.You can apply the dereferencing oper-
ator (*) to either. In most expressions, each represents an address. One difference is that
you can change the value of a pointer, whereas an array name is a constant:

pointername = pointername + 1; // valid
arrayname = arrayname + 1; // not allowed

A second difference is that applying the sizeof operator to an array name yields the
size of the array, but applying sizeof to a pointer yields the size of the pointer, even if the
pointer points to the array. For example, in Listing 4.19, both pw and wages refer to the
same array. But applying the sizeof operator to them produces the following results:

24 = size of wages array << displaying sizeof wages

4 = size of pw pointer << displaying sizeof pw

This is one case in which C++ doesn’t interpret the array name as an address.

The Address of an Array

Taking the address of an array is another case in which the name of an array is not inter-
preted as its address. But wait, isn't the name of an array interpreted as the address of the
array? Not quite—the name of the array is interpreted as the address of the first element of
an array, whereas applying the address operator yields the address of the whole array:

short tell[10]; // tell an array of 20 bytes
cout << tell << endl; // displays &tell[0]

cout << &tell << endl; // displays address of whole array

Numerically, these two addresses are the same, but conceptually &tell [0], and hence
tell, is the address of a 2-byte block of memory, whereas &tell is the address of a 20-
byte block of memory. So the expression tell + 1 adds 2 to the address value, whereas
&tell + 1 adds 20 to the address value. Another way of expressing this is to say that
tell is type pointerto-short, or short *, and &tell is type pointerto-array-of-20-shorts,
or short (*) [20].

Now you might be wondering about the genesis of that last type description. First, here is
how you could declare and initialize a pointer of that type:

short (*pas) [20] = &tell; // pas points to array of 20 shorts

If you omit the parentheses, precedence rules would first associate [20] with pas, making
pas an array of 20 pointers-to-short, so the parentheses are necessary. Next, if you wish to
describe the type of a variable, you can use the declaration of that variable as a guide and
remove the variable name. Thus, the type of pas is short (*) [20]. Also note that
because pas is set to &tell, *pas is equivalent to tell, so (*pas) [0] would be the first
element of the tell array.

Pointers, Arrays, and Pointer Arithmetic

In short, using new to create an array and using a pointer to access the different ele-
ments is a simple matter.You just treat the pointer as an array name. Understanding why
this works, however, is an interesting challenge. If you actually want to understand arrays
and pointers, you should review their mutual relationships carefully.

Summarizing Pointer Points

You’ve been exposed to quite a bit of pointer knowledge lately, so let’s summarize what’s
been revealed about pointers and arrays to date.

Declaring Pointers
To declare a pointer to a particular type, use this form:

typeName * pointerName;

Here are some examples:

double * pn; // pn can point to a double value
char * pc; // pc can point to a char value

Here pn and pc are pointers, and double * and char * are the C++ notations for the
types pointer-to-double and pointer-to-char.

Assigning Values to Pointers
You should assign a memory address to a pointer.You can apply the & operator to a vari-
able name to get an address of named memory, and the new operator returns the address of
unnamed memory.

Here are some examples:

double * pn; // pn can point to a double value

double * pa; // so can pa

char * pc; // pc can point to a char value

double bubble = 3.2;

pn = &bubble; // assign address of bubble to pn

pc = new char; // assign address of newly allocated char memory to pc

pa = new double[30]; // assign address of 1lst element of array of 30 double to pa

Dereferencing Pointers
Dereferencing a pointer means referring to the pointed-to value.You apply the derefer-
encing, or indirect value, operator (*) to a pointer to dereference it. Thus, if pn is a
pointer to bubble, as in the preceding example, then *pn is the pointed-to value, or 3.2,
in this case.

Here are some examples:

cout << *pn; // print the value of bubble
*pc = 'S'; // place 'S' into the memory location whose address is pc

171

172

Chapter 4 Compound Types

Array notation is a second way to dereference a pointer; for instance, pn[0] is the same
as *pn.You should never dereference a pointer that has not been initialized to a proper
address.

Distinguishing Between a Pointer and the Pointed-to Value
Remember, if pt is a pointer-to-int, *pt is not a pointer-to-int; instead, *pt is the com-
plete equivalent to a type int variable. It is pt that is the pointer.

Here are some examples:

int * pt = new int; // assigns an address to the pointer pt
*pt = 5; // stores the value 5 at that address

Array Names
In most contexts, C++ treats the name of an array as equivalent to the address of the first
element of an array.

Here is an example:

int tacos[10]; // now tacos is the same as &tacos[0]

One exception is when you use the name of an array with the sizeof operator. In that
case, sizeof returns the size of the entire array, in bytes.

Pointer Arithmetic
C++ allows you to add an integer to a pointer. The result of adding one equals the origi-
nal address value plus a value equal to the number of bytes in the pointed-to object.You
can also subtract an integer from a pointer to take the difference between two pointers.
The last operation, which yields an integer, is meaningful only if the two pointers point
into the same array (pointing to one position past the end is allowed, too); it then yields
the separation between the two elements.

Here are some examples:

int tacos[10] = {5,2,8,4,1,2,2,4,6,8};

int * pt = tacos; // suppose pf and tacos are the address 3000
pt = pt + 1; // now pt is 3004 if a int is 4 bytes

int *pe = &tacos[9]; // pe is 3036 if an int is 4 bytes

pe = pe - 1; // now pe is 3032, the address of tacos[8]
int diff = pe - pt; // diff is 7, the separation between

// tacos[8] and tacos([1]

Dynamic Binding and Static Binding for Arrays
You can use an array declaration to create an array with static binding—that is, an array
whose size is set during the compilation process:

int tacos[10]; // static binding, size fixed at compile time

Pointers, Arrays, and Pointer Arithmetic

You use the new [] operator to create an array with dynamic binding (a dynamic
array)—that is, an array that is allocated and whose size can be set during runtime.You
free the memory with delete [] when you are done:
int size;
cin >> size;

int * pz = new int [sizel; // dynamic binding, size set at run time

delete [] pz; // free memory when finished

Array Notation and Pointer Notation

Using bracket array notation is equivalent to dereferencing a pointer:

tacos[0] means *tacos means the value at address tacos
tacos[3] means *(tacos + 3) means the value at address tacos + 3

This is true for both array names and pointer variables, so you can use either pointer
notation or array notation with pointers and array names.
Here are some examples:

int * pt = new int [10]; // pt points to block of 10 ints

*pt = 5; // set element number 0 to 5

ptl0] = 6; // reset element number 0 to 6

pt[9] = 44; // set tenth element (element number 9) to 44
int coats[10];

* (coats + 4) = 12; // set coats[4] to 12

Pointers and Strings

The special relationship between arrays and pointers extends to C-style strings. Consider
the following code:

char flower[10] = "rose";
cout << flower << "s are red\n";

The name of an array is the address of its first element, so £lower in the cout state-
ment is the address of the char element containing the character r.The cout object
assumes that the address of a char is the address of a string, so it prints the character at
that address and then continues printing characters until it runs into the null character
(\0). In short, if you give cout the address of a character, it prints everything from that
character to the first null character that follows it.

The crucial element here is not that flower is an array name but that £lower acts as
the address of a char.This implies that you can use a pointer-to-char variable as an argu-
ment to cout also because it, too, is the address of a char. Of course, that pointer should
point to the beginning of a string. We’ll check that out in a moment.

But what about the final part of the preceding cout statement? If £lower is actually the
address of the first character of a string, what is the expression "s are red\n"? To be
consistent with cout’s handling of string output, this quoted string should also be an

173

174

Chapter 4 Compound Types

address. And it is, for in C++ a quoted string, like an array name, serves as the address of
its first element. The preceding code doesn’t really send a whole string to cout; it just
sends the string address. This means strings in an array, quoted string constants, and strings
described by pointers are all handled equivalently. Each is really passed along as an address.
That’s certainly less work than passing each and every character in a string.

Note
With cout and with most C++ expressions, the name of an array of char, a pointer-to-

char, and a quoted string constant are all interpreted as the address of the first character
of a string.

Listing 4.20 illustrates the use of the different forms of strings. It uses two functions
from the string library. The strlen() function, which you’ve used before, returns the
length of a string. The strcpy () function copies a string from one location to another.
Both have function prototypes in the cstring header file (or string.h, on less up-to-
date implementations). The program also uses comments to showcase some pointer mis-
uses that you should try to avoid.

Listing 4.20 ptrstr.cpp

// ptrstr.cpp -- using pointers to strings

#include <iostream>

#include <cstrings> // declare strlen(), strcpy()
int main ()

{

using namespace std;

char animal[20] = "bear"; // animal holds bear

const char * bird = "wren"; // bird holds address of string

char * ps; // uninitialized

cout << animal << " and "; // display bear

cout << bird << "\n"; // display wren

// cout << ps << "\n"; //may display garbage, may cause a crash

cout << "Enter a kind of animal: ";

cin >> animal; // ok if input < 20 chars
// cin >> ps; Too horrible a blunder to try; ps doesn't
// point to allocated space

ps = animal; // set ps to point to string
cout << ps << "!\n"; // ok, same as using animal
cout << "Before using strcpy():\n";

cout << animal << " at " << (int *) animal << endl;

cout << ps << " at " << (int *) ps << endl;

ps = new char[strlen(animal) + 1]; // get new storage
strcpy (ps, animal); // copy string to new storage

Pointers, Arrays, and Pointer Arithmetic

cout << "After using strcpy():\n";

cout << animal << " at " << (int *) animal << endl;
cout << ps << " at " << (int *) ps << endl;

delete [] ps;

return 0;

Here is a sample run of the program in Listing 4.20:

bear and wren

Enter a kind of animal: fox
fox!

Before using strcpy():

fox at 0x0065£d30

fox at 0x0065£d30

After using strcpy():

fox at 0x0065£d30

fox at 0x004301c8

Program Notes

The program in Listing 4.20 creates one char array (animal) and two pointers-to-char
variables (bird and ps).The program begins by initializing the animal array to the
"bear" string, just as you've initialized arrays before. Then, the program does something
new. It initializes a pointer-to-char to a string:

const char * bird = "wren"; // bird holds address of string

Remember, "wren" actually represents the address of the string, so this statement
assigns the address of "wren" to the bird pointer. (Typically, a compiler sets aside an area
in memory to hold all the quoted strings used in the program source code, associating
each stored string with its address.) This means you can use the pointer bird just as you
would use the string "wren", as in this example:

cout << "A concerned " << bird << " speaks\n";

String literals are constants, which is why the code uses the const keyword in the dec-
laration. Using const in this fashion means you can use bird to access the string but not
to change it. Chapter 7 takes up the topic of const pointers in greater detail. Finally, the
pointer ps remains uninitialized, so it doesn’t point to any string. (As you know, that is
usually a bad idea, and this example is no exception.)

Next, the program illustrates that you can use the array name animal and the pointer
bird equivalently with cout. Both, after all, are the addresses of strings, and cout displays
the two strings ("bear" and "wren") stored at those addresses. If you activate the code that
makes the error of attempting to display ps, you might get a blank line, you might get
garbage displayed, and you might get a program crash. Creating an uninitialized pointer is
a bit like distributing a blank signed check:You lack control over how it will be used.

175

176

Chapter 4 Compound Types

For input, the situation is a bit different. It’s safe to use the array animal for input as
long as the input is short enough to fit into the array. It would not be proper to use bird
for input, however:

= Some compilers treat string literals as read-only constants, leading to a runtime error
if you try to write new data over them. That string literals be constants is the man-
dated behavior in C++, but not all compilers have made that change from older
behavior yet.

= Some compilers use just one copy of a string literal to represent all occurrences of
that literal in a program.

Let’s amplify the second point. C++ doesn’t guarantee that string literals are stored
uniquely. That is, if you use a string literal "wren" several times in a program, the compiler
might store several copies of the string or just one copy. If it does the latter, then setting
bird to point to one "wren" makes it point to the only copy of that string. Reading a
value into one string could affect what you thought was an independent string elsewhere.
In any case, because the bird pointer is declared as const, the compiler prevents any
attempt to change the contents of the location pointed to by bird.

Worse yet is trying to read information into the location to which ps points. Because
ps is not initialized, you don’t know where the information will wind up. It might even
overwrite information that is already in memory. Fortunately, it’s easy to avoid these prob-
lems:You just use a sufficiently large char array to receive input and don’t use string con-
stants to receive input or uninitialized pointers to receive input. (Or you can sidestep all
these issues and use std: : string objects instead of arrays.)

Caution

When you read a string into a program-style string, you should always use the address of
previously allocated memory. This address can be in the form of an array name or of a
pointer that has been initialized using new.

Next, notice what the following code accomplishes:

ps = animal; // set ps to point to string

cout << animal << " at " << (int *) animal << endl;
cout << ps << " at " << (int *) ps << endl;

It produces the following output:
fox at 0x0065£d30

fox at 0x0065£d30

Normally, if you give cout a pointer, it prints an address. But if the pointer is type
char *, cout displays the pointed-to string. If you want to see the address of the string, you
have to type cast the pointer to another pointer type, such as int *, which this code does.

Pointers, Arrays, and Pointer Arithmetic

So ps displays as the string "fox",but (int *) ps displays as the address where the string
is found. Note that assigning animal to ps does not copy the string; it copies the address.
This results in two pointers (animal and ps) to the same memory location and string.

To get a copy of a string, you need to do more. First, you need to allocate memory to
hold the string.You can do this by declaring a second array or by using new. The second
approach enables you to custom fit the storage to the string:

ps = new char[strlen(animal) + 1]; // get new storage

The string "fox" doesn’t completely fill the animal array, so this approach wastes
space. This bit of code uses strlen() to find the length of the string; it adds one to get
the length, including the null character. Then the program uses new to allocate just enough
space to hold the string.

Next, you need a way to copy a string from the animal array to the newly allocated
space. It doesn’t work to assign animal to ps because that just changes the address stored
in ps and thus loses the only way the program had to access the newly allocated memory.
Instead, you need to use the strcpy () library function:

strcpy (ps, animal); // copy string to new storage

The strepy () function takes two arguments. The first is the destination address, and
the second is the address of the string to be copied. It’s up to you to make certain that the
destination really is allocated and has sufficient space to hold the copy.That’s accomplished
here by using strlen() to find the correct size and using new to get free memory.

Note that by using strcpy () and new, you get two separate copies of "fox":

fox at 0x0065£fd30
fox at 0x004301c8

Also note that new located the new storage at a memory location quite distant from
that of the array animal.

Often you encounter the need to place a string into an array.You use the = operator
when you initialize an array; otherwise, you use strcpy () or strncpy ().You've seen the
strepy () function; it works like this:

char food[20] = "carrots"; // initialization
strcpy (food, "flan"); // otherwise

Note that something like the following can cause problems because the food array is
smaller than the string:

strcpy (food, "a picnic basket filled with many goodies");

In this case, the function copies the rest of the string into the memory bytes immedi-
ately following the array, which can overwrite other memory the program is using. To
avoid that problem, you should use strncpy () instead. It takes a third argument: the max-
imum number of characters to be copied. Be aware, however, that if this function runs out

177

178

Chapter 4 Compound Types

of space before it reaches the end of the string, it doesn’t add the null character. Thus, you
should use the function like this:

strncpy (food, "a picnic basket filled with many goodies", 19);
food[19] = '\0';

This copies up to 19 characters into the array and then sets the last element to the null
character. If the string is shorter than 19 characters, strnepy () adds a null character earlier
to mark the true end of the string.

Caution

Use strecpy () or strncpy (), not the assignment operator, to assign a string to an array.

Now that you've seen some aspects of using C-style strings and the cstring library,
you can appreciate the comparative simplicity of using the C++ string type.You (nor-
mally) don’t have to worry about a string overflowing an array, and you can use the
assignment operator instead of strcpy () or strncpy ().

Using new to Create Dynamic Structures

You’ve seen how it can be advantageous to create arrays during runtime rather than at
compile time. The same holds true for structures.You need to allocate space for only as
many structures as a program needs during a particular run. Again, the new operator is the
tool to use. With it, you can create dynamic structures. Again, dynamic means the memory
is allocated during runtime, not at compile time. Incidentally, because classes are much like
structures, you are able to use the techniques you’ll learn in this section for structures with
classes, too.

Using new with structures has two parts: creating the structure and accessing its mem-
bers. To create a structure, you use the structure type with new. For example, to create an
unnamed structure of the inflatable type and assign its address to a suitable pointer, you
can use the following:

inflatable * ps = new inflatable;

This assigns to ps the address of a chunk of free memory large enough to hold a struc-
ture of the inflatable type. Note that the syntax is exactly the same as it is for C++7%
built-in types.

The tricky part is accessing members. When you create a dynamic structure, you can’t
use the dot membership operator with the structure name because the structure has no
name. All you have is its address. C++ provides an operator just for this situation: the
arrow membership operator (->).This operator, formed by typing a hyphen and then a
greater-than symbol, does for pointers to structures what the dot operator does for struc-
ture names. For example, if ps points to a type inflatable structure, then ps->price is
the price member of the pointed-to structure (see Figure 4.11).

Pointers, Arrays, and Pointer Arithmetic 179

struct things

{
int good;
int bad;
}; : grubnose isa
structure.
—

things grubnose = {3, 453};
things * pt = &grubnose;
-~

| pt points to the
grubnose structure.

grubnose.good grubnose.bad

Use . operator with
structure name.

grubnose structure —l 3 | 453 |
Use —operator with | |
pointer—to—structure. pt —good pt— bad

Figure 4.11 Identifying structure members.
Tip
Sometimes new C++ users become confused about when to use the dot operator and when
to use the arrow operator to specify a structure member. The rule is simple: If the structure

identifier is the name of a structure, use the dot operator. If the identifier is a pointer to the
structure, use the arrow operator.

A second, uglier approach to accessing structure members is to realize that if ps is a
pointer to a structure, then *ps represents the pointed-to value—the structure itself. Then,
because *ps is a structure, (*ps) .price is the price member of the structure. C++’
operator precedence rules require that you use parentheses in this construction.

Listing 4.21 uses new to create an unnamed structure and demonstrates both pointer
notations for accessing structure members.

Listing 4.21 newstrct.cpp

// newstrct.cpp -- using new with a structure
#include <iostream>
struct inflatable // structure definition
{
char name [20] ;
float volume;
double price;
Vi
int main()
{

using namespace std;

180

Chapter 4 Compound Types

inflatable * ps = new inflatable; // allot memory for structure
cout << "Enter name of inflatable item: ";

cin.get (ps->name, 20); // method 1 for member access
cout << "Enter volume in cubic feet: ";

cin >> (*ps).volume; // method 2 for member access
cout << "Enter price: $";

cin >> ps->price;

cout << "Name: " << (*ps).name << endl; // method 2
cout << "Volume: " << ps->volume << " cubic feet\n"; // method 1
cout << "Price: $" << ps->price << endl; // method 1
delete ps; // free memory used by structure
return 0;

Here is a sample run of the program in Listing 4.21:

Enter name of inflatable item: Fabulous Frodo
Enter volume in cubic feet: 1.4

Enter price: $27.99

Name: Fabulous Frodo

Volume: 1.4 cubic feet

Price: $27.99

An Example of Using new and delete

Let’s look at an example that uses new and delete to manage storing string input from the
keyboard. Listing 4.22 defines a function getname () that returns a pointer to an input
string. This function reads the input into a large temporary array and then uses new []
with an appropriate size to create a chunk of memory sized to fit to the input string. Then
the function returns the pointer to the block. This approach could conserve a lot of mem-
ory for programs that read in a large number of strings. (In real life, where many of us live,
it would be easier to use the string class, which has the use of new and delete built in to
its design.)

Suppose your program has to read 1,000 strings and that the largest string might be 79
characters long, but most of the strings are much shorter than that. If you used char arrays
to hold the strings, you'd need 1,000 arrays of 80 characters each.That’s 80,000 bytes, and
much of that block of memory would wind up being unused. Alternatively, you could cre-
ate an array of 1,000 pointers to char and then use new to allocate only the amount of
memory needed for each string. That could save tens of thousands of bytes. Instead of hav-
ing to use a large array for every string, you fit the memory to the input. Even better, you
could also use new to find space to store only as many pointers as needed. Well, that’s a lit-
tle too ambitious for right now. Even using an array of 1,000 pointers is a little too ambi-
tious for right now, but Listing 4.22 illustrates some of the technique. Also just to illustrate
how delete works, the program uses it to free memory for reuse.

Pointers, Arrays, and Pointer Arithmetic

Listing 4.22 delete.cpp

// delete.cpp -- using the delete operator
#include <iostreams>

#include <cstring> // or string.h

using namespace std;

char * getname (void) ; // function prototype

int main()
char * name; // create pointer but no storage
name = getname () ; // assign address of string to name
cout << name << " at " << (int *) name << "\n";
delete [] name; // memory freed
name = getname () ; // reuse freed memory
cout << name << " at " << (int *) name << "\n";
delete [] name; // memory freed again
return 0;

char * getname () // return pointer to new string
char temp[80]; // temporary storage

cout << "Enter last name: ";

cin >> temp;

char * pn = new char[strlen(temp) + 1];

strcpy (pn, temp) ; // copy string into smaller space

return pn; // temp lost when function ends

Here is a sample run of the program in Listing 4.22:

Enter last name: Fredeldumpkin
Fredeldumpkin at 0x004326Db8
Enter last name: Pook

Pook at 0x004301c8

Program Notes

Consider the function getname () in the program in Listing 4.22. It uses cin to place an
input word into the temp array. Next, it uses new to allocate new memory to hold the
word. Including the null character, the program needs strlen(temp) + 1 characters to
store the string, so that’s the value given to new. After the space becomes available,
getname () uses the standard library function strepy () to copy the string from temp to
the new block.The function doesn’t check to see whether the string fits, but getname ()

181

182

Chapter 4 Compound Types

covers that by requesting the right number of bytes with new. Finally, the function returns
pn, the address of the string copy.

In main (), the return value (the address) is assigned to the pointer name. This pointer is
defined in main (), but it points to the block of memory allocated in the getname () func-
tion. The program then prints the string and the address of the string.

Next, after it frees the block pointed to by name, main () calls getname () a second
time. C++ doesn’t guarantee that newly freed memory is the first to be chosen the next
time new is used, and in this sample run, it isn’t.

Note in this example that getname () allocates memory and main () frees it. It’s usually
not a good idea to put new and delete in separate functions because that makes it easier
to forget to use delete. But this example does separate new from delete just to show that
it is possible.

To appreciate some of the more subtle aspects of this program, you should know a little
more about how C++ handles memory. So let’s preview some material that’s covered
more fully in Chapter 9.

Automatic Storage, Static Storage, and Dynamic Storage

C++ has three ways of managing memory for data, depending on the method used to
allocate memory: automatic storage, static storage, and dynamic storage, sometimes called
the free store or heap. Data objects allocated in these three ways differ from each other in
how long they remain in existence. We’ll take a quick look at each type. (C++11 adds a
fourth form called thread storage that we’ll discuss briefly in Chapter 9.)

Automatic Storage

Ordinary variables defined inside a function use automatic storage and are called automatic
variables. These terms mean that the variables come into existence automatically when the
function containing them is invoked, and they expire when the function terminates. For
example, the temp array in Listing 4.22 exists only while the getname () function is active.
‘When program control returns to main (), the memory used for temp is freed automati-
cally. If getname () returned the address of temp, the name pointer in main() would be left
pointing to a memory location that would soon be reused. That’s one reason you have to
use new in getname () . Actually, automatic values are local to the block that contains them.
A block is a section of code enclosed between braces. So far, all our blocks have been entire
functions. But as you'll see in the next chapter, you can have blocks within a function. If
you define a variable inside one of those blocks, it exists only while the program is exe-
cuting statements inside the block.

Automatic variables typically are stored on a stack. This means that when program exe-
cution enters a block of code, its variables are added consecutively to the stack in memory
and then are freed in reverse order when execution leaves the block. (This is called a last-
in, first-out, or LIFO, process.) So the stack grows and shrinks as execution proceeds.

Pointers, Arrays, and Pointer Arithmetic

Static Storage

Static storage is storage that exists throughout the execution of an entire program.There
are two ways to make a variable static. One is to define it externally, outside a function.
The other is to use the keyword static when declaring a variable:

static double fee = 56.50;

Under K&R C, you can initialize only static arrays and structures, whereas C++
Release 2.0 (and later) and ANSI C allow you to initialize automatic arrays and structures,
too. However, as you may have discovered, some C++ implementations do not yet imple-
ment initialization for automatic arrays and structures.

Chapter 9 discusses static storage in more detail. The main point you should note now
about automatic and static storage is that these methods rigidly define the lifetime of a
variable. Either the variable exists for the entire duration of a program (a static variable) or
it exists only while a particular function is being executed (an automatic variable).

Dynamic Storage

The new and delete operators provide a more flexible approach than automatic and static
variables. They manage a pool of memory, which C++ refers to as the free store or heap.
This pool is separate from the memory used for static and automatic variables. As Listing
4.22 shows, new and delete enable you to allocate memory in one function and free it in
another. Thus, the lifetime of the data is not tied arbitrarily to the life of the program or
the life of a function. Using new and delete together gives you much more control over
how a program uses memory than does using ordinary variables. However, memory man-
agement becomes more complex. In a stack, the automatic addition and removal mecha-
nism results in the part of memory in use always being contiguous. But the interplay
between new and delete can leave holes in the free store, making keeping track of where
to allocate new memory requests more difficult.

Stacks, Heaps, and Memory Leaks

What happens if you don’t call delete after creating a variable on the free store (or heap)
with the new operator? The variable or construct dynamically allocated on the free store
continues to persist if delete is not called, even though the memory that contains the
pointer has been freed due to rules of scope and object lifetime. In essence, you have no
way to access the construct on the free store because the pointer to the memory that con-
tains it is gone. You have now created a memory leak. Memory that has been leaked remains
unusable through the life of the program; it’s been allocated but can’t be deallocated.

In extreme (though not uncommon) cases, memory leaks can be so severe that they use up
all the memory available to the application, causing it to crash with an out-of-memory error. In
addition, these leaks may negatively affect some operating systems or other applications run-
ning in the same memory space, causing them, in turn, to fail.

Even the best programmers and software companies create memory leaks. To avoid them,
it's best to get into the habit of joining your new and delete operators immediately, plan-
ning for and entering the deletion of your construct as soon as you dynamically allocate it
on the free store. C++’s smart pointers (Chapter 16) help automate the task.

183

184

Chapter 4 Compound Types

Note

Pointers are among the most powerful of C++ tools. They are also the most dangerous
because they permit computer-unfriendly actions, such as using an uninitialized pointer to
access memory or attempting to free the same memory block twice. Furthermore, until you
get used to pointer notation and pointer concepts through practice, pointers can be confus-
ing. Because pointers are an important part of C++ programming, they weave in and out of
future discussions in this book. This book discusses pointers several more times. The hope
is that each exposure will make you more comfortable with them.

Combinations of Types

This chapter has introduced arrays, structures, and pointers. These can be combined in
various ways, so let’s review some of the possibilities, starting with a structure:

struct antarctica_years_end

{
int year;
/* some really interesting data, etc. */
Vi
We can create variables of this type:

antarctica years end s01, s02, s03; // s01, s02, s03 are structures

We can then access members using the membership operator:

sO0l.year = 1998;

We can create a pointer to such a structure:
antarctica years end * pa = &s02;

Provided the pointer has been set to a valid address, we then can use the indirect
membership operator to access members:
pa->year = 1999;

We can create arrays of structures:

antarctica_years end trio[3]; // array of 3 structures

We then can use the membership operator to access members of an element:
trio[0] .year = 2003; // trio[0] is a structure
Here, trio is an array, but trio[0] is a structure, and trio[0] .year is a member of

that structure. Because an array name is a pointer, we also can use the indirect member-
ship operator:

(trio+l) ->year = 2004; // same as trio[l].year = 2004;

We can create an array of pointers:

const antarctica years end * arp[3] = {&s01, &s02, &s03};

Combinations of Types

This is starting to look a bit complicated. How can we access data with this array?
Well, if arp is an array of pointers, then arp [1] must be a pointer, and we can use the
indirect membership operator with it to access a member:

std::cout << arp[l]->year << std::endl;

We can create a pointer to such an array:

const antarctica years_end ** ppa = arp;

Here, arp is the name of an array; hence, it is the address of its first element. But its
first element is a pointer, so ppa has to be a pointer to a pointer to const
antarctica_years_end, hence the **. There are several ways you could mess up this
declaration. For example, you could omit the const, forget an * or two, transpose letters,
or otherwise mangle the structure type. Here is an instance for which the C++11 version
of auto is convenient. The compiler is perfectly aware of what type arp is, so it can
deduce the correct type for you:

auto ppb = arp; // C++1l automatic type deduction

In the past, the compiler used its knowledge of the correct type to complain about
errors you may have made in the declaration; now it can let its knowledge work for you.

How can you use ppa to access data? Because ppa is a pointer to a pointer to a struc-
ture, *ppa is a pointer to a structure, so you can use it with the indirect membership
operator:

std::cout << (*ppa)->year << std::endl;
std::cout << (*(ppb+l))->year << std::endl;

Because ppa points to the first member of arp, *ppa is the first member, which is
&s01.So (*ppa) ->year is the year member of s01. In the second statement, ppb+1
points to the next element, arp [1], which is &s02.The parentheses are needed to get the
correct associations. For example, *ppa->year would attempt to apply the * operator to
ppa->year, which fails because the year member is not a pointer.

Is all this really true? Listing 4.23 incorporates all the preceding statements into a short
program.

Listing 4.23 mixtypes.cpp

// mixtypes.cpp -- some type combinations
#include <iostreams>

struct antarctica_years_end

int year;
/* some really interesting data, etc. */

}i

int main()

185

186

Chapter 4 Compound Types

antarctica years_end s01, s02, s03;
s01.year = 1998;
antarctica years end * pa = &s02;
pa->year = 1999;
antarctica_years _end trio[3]; // array of 3 structures
trio[0] .year = 2003;
std::cout << trio->year << std::endl;
const antarctica years end * arp[3] = {&s01, &s02, &s03};
std::cout << arp[l]-s>year << std::endl;
const antarctica years end ** ppa = arp;
auto ppb = arp; // C++11l automatic type deduction
// or else use const antarctica_years_end ** ppb = arp;
std::cout << (*ppa)->year << std::endl;
std::cout << (*(ppb+l))->year << std::endl;
return 0;

Here’s the output:

2003
1999
1998
1999

The program compiles and works as promised.

Array Alternatives

Earlier this chapter mentioned the vector and array template classes as alternatives to
the built-in array. Let’s take a brief look now at how they are used and at some of the
benefits of using them.

The vector Template Class

The vector template class is similar to the string class in that it is a dynamic array.You
can set the size of a vector object during runtime, and you can append new data to the
end or insert new data in the middle. Basically, it’s an alternative to using new to create a
dynamic array. Actually, the vector class does use new and delete to manage memory,
but it does so automatically.

At this time we won't venture very deeply into what it means to be a template class.
Instead, we’ll look at a few basic practical matters. First, to use a vector object, you need
to include the vector header file. Second, the vector identifier is part of the std name-
space, so you can use a using directive, a using declaration, or std: : vector. Third,

Array Alternatives

templates use a different syntax to indicate the type of data stored. Fourth, the vector
class uses a different syntax to indicate the number of elements. Here are some examples:

#include <vector>

using namespace std;

vector<int> vi; // create a zero-size array of int
int n;

cin >> n;

vector<double> vd(n); // create an array of n doubles

We say that vi is an object of type vector<int> and that vd is an object of type
vector<doubles. Because vector objects resize automatically when you insert or add
values to them, it’s okay for vi to start with O size. But for the resizing to work, you
would use the various methods that are part of the vector package.

In general, the following declaration creates a vector object vt that can hold n_elem
elements of type typeName:

vector<typeName> vt (n_elem) ;

The parameter n_elem can be an integer constant or an integer variable.

The array Template Class (C++11)

The vector class has more capabilities than the built-in array type, but this comes at a
cost of slightly less efficiency. If all you need is a fixed-size array, it could be advantageous
to use the built-in type. However, that has its own costs of lessened convenience and
safety. C++11 responded to this situation by adding the array template class, which is
part of the std namespace. Like the built-in type, an array object has a fixed size and uses
the stack (or else static memory allocation) instead of the free store, so it shares the effi-
ciency of built-in arrays.To this it adds convenience and additional safety. To create an
array object, you need to include the array header file. The syntax is a bit different from
that for a vector:

#include <array>

using namespace std;
array<int, 5> ai; // create array object of 5 ints
array<double, 4> ad = {1.2, 2.1, 3.43. 4.3};

More general, the following declaration creates an array object arr with n_elem ele-
ments of typeName:
array<typeName, n_elem> arr;

Unlike the case for vector, n_elem can’t be a variable.

With C++11, you can use list-initialization with vector and array objects. However,
that was not an option with C++98 vector objects.

187

188 Chapter 4 Compound Types

Comparing Arrays, Vector Objects, and Array Objects

Perhaps the simplest way to understand the similarities and differences between arrays,
vector objects, and array objects is to look at a brief example (Listing 4.24) that uses all
three approaches.

Listing 4.24 choices.cpp

// choices.cpp -- array variations
#include <iostreams>
#include <vectors> // STL C++98
#include <array> // C++11
int main ()
{

using namespace std;
// C, original C++

double al[4] = {1.2, 2.4, 3.6, 4.8};
// C++98 STL

vector<double> a2 (4); // create vector with 4 elements
// no simple way to initialize in C98

a2[0] = 1.0/3.0;

a2[1] = 1.0/5.0;

a2[2] = 1.0/7.0;

a2[3] = 1.0/9.0;
// C++11 -- create and initialize array object

array<double, 4> a3 = {3.14, 2.72, 1.62, 1.41};
array<double, 4> a4;

a4 = a3; // valid for array objects of same size

// use array notation
cout << "al[2]: " << al[2] << " at " << &al[2] << endl;
cout << "a2[2]: " << a2[2] << " at " << &a2[2] << endl;
cout << "a3[2]: " << a3[2] << " at " << &a3[2] << endl;
cout << "a4[2]: " << a4[2] << " at " << &a4[2] << endl;

// misdeed
al[-2] = 20.2;
cout << "al[-2]: " << al[-2] <<" at " << &al[-2] << endl;
cout << "a3[2]: " << a3[2] << " at " << &a3[2] << endl;
cout << "a4[2]: " << a4[2] << " at " << &a4[2] << endl;
return 0;

1

Here’s some sample output:

al[2]: 3.6 at 0x28cce8

a2[2]: 0.142857 at 0xca0328

a3[2]: 1.62 at 0x28cccs8

a4[2]: 1.62 at 0x28ccas

Array Alternatives

al[-2]: 20.2 at 0x28ccc8
a3[2]: 20.2 at 0x28ccc8
a4[2]: 1.62 at 0x28cca8

Program Notes
First, notice that whether we use a built-in array, a vector object, or an array object, we
can use the standard array notation to access individual members. Second, you can see
from the addresses that array objects use the same region of memory (the stack, in this
case) as the built-in array, whereas the vector object is stored in a different region (the
free store, or heap). Third, note that you can assign an array object to another array
object. For built-in arrays, you have to copy the data element-by-element.

Next, and this deserves special attention, note this line:

al[-2] = 20.2;

What does an index of -2 mean? Recall that this translates to the following:

*(al-2) = 20.2;

Expressing this in words, see where a1 points, move backward two double elements,
and put 20.2 there. That is, store the information at a location outside of the array. C++,
like C, does not check for such out-of-range errors. In this particular case, that location
turned out to be in the array object a3. Another compiler placed the wayward 20.2 in
a4, and other compilers might make yet other bad choices. This is an example of the
unsafe behavior of built-in arrays.

Do the vector and array objects protect against this behavior? They can if you let
them. That is, you still can write unsafe code, such as the following:
a2([-2] = .5; // still allowed
a3[200] = 1.4;

However, you have alternatives. One is using the at () member function. Just as you
can use the getline () member function with the cin object, you can use the at ()
member function with objects of the vector or array type:

a2.at (1) = 2.3; // assign 2.3 to a2[1]

The difference between using bracket notation and the at () member function is that
if you use at (), an invalid index is caught during runtime and the program, by default,
aborts. This added checking does come at the cost of increased run time, which is why
C++ gives you the option of using either notation. More than that, these classes offer
ways of using objects that reduce the chances of accidental range errors. For example, the
classes have begin () and end () member functions that let you delimit the range without
accidentally exceeding the bounds. But we’ll save that discussion until Chapter 16.

189

190

Chapter 4 Compound Types

Summary

Arrays, structures, and pointers are three C++ compound types. An array can hold several
values, all of the same type, in a single data object. By using an index, or subscript, you
can access the individual elements in an array.

A structure can hold several values of different types in a single data object, and you
can use the membership operator (.) to access individual members. The first step in using
structures 1s to create a structure template that defines what members the structure holds.
The name, or tag, for this template then becomes a new type identifier.You can then
declare structure variables of that type.

A union can hold a single value, but it can be of a variety of types, with the member
name indicating which mode is being used.

Pointers are variables that are designed to hold addresses. We say a pointer points to the
address it holds. The pointer declaration always states to what type of object a pointer
points. Applying the dereferencing operator (*) to a pointer yields the value at the loca-
tion to which the pointer points.

A string is a series of characters terminated by a null character. A string can be repre-
sented by a quoted string constant, in which case the null character is implicitly under-
stood.You can store a string in an array of char, and you can represent a string with a
pointer-to-char that is initialized to point to the string. The strlen() function returns
the length of a string, not counting the null character. The strcpy () function copies a
string from one location to another. When using these functions, you include the
cstring or the string.h header file.

The C++ string class, supported by the string header file, offers an alternative,
more user-friendly means to deal with strings. In particular, string objects are automati-
cally resized to accommodate stored strings, and you can use the assignment operator to
copy a string.

The new operator lets you request memory for a data object while a program is run-
ning. The operator returns the address of the memory it obtains, and you can assign that
address to a pointer. The only means to access that memory is to use the pointer. If the
data object is a simple variable, you can use the dereferencing operator (*) to indicate a
value. If the data object is an array, you can use the pointer as if it were an array name to
access the elements. If the data object is a structure, you can use the pointer dereferencing
operator (->) to access structure members.

Pointers and arrays are closely connected. If ar is an array name, then the expression
ar[i] is interpreted as * (ar + i), with the array name interpreted as the address of the
first element of the array. Thus, the array name plays the same role as a pointer. In turn, you
can use a pointer name with array notation to access elements in an array allocated by new.

The new and delete operators let you explicitly control when data objects are allo-
cated and when they are returned to the memory pool. Automatic variables, which are
those declared within a function, and static variables, which are defined outside a function
or with the keyword static, are less flexible. An automatic variable comes into being

Chapter Review

when the block containing it (typically a function definition) is entered, and it expires

when the block is left. A static variable persists for the duration of a program.
The Standard Template Library (STL), added by the C++98 standard, provides a
vector template class that provides an alternative to do-it-yourself dynamic arrays. C++11

provides an array template class that offers an alternative to fixed-sized built-in arrays.

Chapter Review

1.

11.

12.

13.

How would you declare each of the following?
a. actors is an array of 30 char.
b. betsie is an array of 100 short.
. chuck is an array of 13 float.

d. dipsea is an array of 64 long double.

Does Chapter Review Question 1 use the array template class instead of built-in
arrays.

Declare an array of five ints and initialize it to the first five odd positive integers.

Write a statement that assigns the sum of the first and last elements of the array in
Question 3 to the variable even.

Write a statement that displays the value of the second element in the float array

ideas.
Declare an array of char and initialize it to the string "cheeseburger".
Declare a string object and initialize it to the string "Waldorf Salad".

Devise a structure declaration that describes a fish. The structure should include the
kind, the weight in whole ounces, and the length in fractional inches.

Declare a variable of the type defined in Question 8 and initialize it.

Use enum to define a type called Response with the possible values Yes, No, and
Maybe. Yes should be 1, No should be 0, and Maybe should be 2.

Suppose ted is a double variable. Declare a pointer that points to ted and use the
pointer to display ted’s value.

Suppose treacle is an array of 10 £loats. Declare a pointer that points to the first ele-
ment of treacle and use the pointer to display the first and last elements of the array.

Write a code fragment that asks the user to enter a positive integer and then cre-
ates a dynamic array of that many ints. Do this by using new, then again using a
vector object.

191

192

Chapter 4 Compound Types

14.

15.

16.

17.

Is the following valid code? If so, what does it print?
cout << (int *) “Home of the jolly bytes”;

Write a code fragment that dynamically allocates a structure of the type described
in Question 8 and then reads a value for the kind member of the structure.

Listing 4.6 illustrates a problem created by following numeric input with line-ori-
ented string input. How would replacing this:

cin.getline(address,80);
with this:
cin >> address;

affect the working of this program?

Declare a vector object of 10 string objects and an array object of 10 string
objects. Show the necessary header files and don’t use using. Do use a const for
the number of strings.

Programming Exercises
1.

Write a C++ program that requests and displays information as shown in the fol-
lowing example of output:

What is your first name? Betty Sue

What is your last name? Yewe

What letter grade do you deserve? B

What is your age? 22

Name: Yewe, Betty Sue

Grade: C

Age: 22

Note that the program should be able to accept first names that comprise more
than one word. Also note that the program adjusts the grade downward—that is, up
one letter. Assume that the user requests an A, a B, or a C so that you don’t have to
worry about the gap between a D and an E

Rewrite Listing 4.4, using the C++ string class instead of char arrays.

Write a program that asks the user to enter his or her first name and then last
name, and that then constructs, stores, and displays a third string, consisting of the
user’s last name followed by a comma, a space, and first name. Use char arrays and
functions from the cstring header file. A sample run could look like this:

Enter your first name: Flip

Enter your last name: Fleming

Here’s the information in a single string: Fleming, Flip

10.

Programming Exercises

Write a program that asks the user to enter his or her first name and then last
name, and that then constructs, stores, and displays a third string consisting of the
user’s last name followed by a comma, a space, and first name. Use string objects
and methods from the string header file. A sample run could look like this:
Enter your first name: Flip

Enter your last name: Fleming

Here’s the information in a single string: Fleming, Flip

The candyBar structure contains three members. The first member holds the brand
name of a candy bar. The second member holds the weight (which may have a frac-
tional part) of the candy bar, and the third member holds the number of calories
(an integer value) in the candy bar. Write a program that declares such a structure
and creates a CandyBar variable called snack, initializing its members to "Mocha
Munch", 2.3, and 350, respectively. The initialization should be part of the declara-
tion for snack. Finally, the program should display the contents of the snack vari-
able.

The candyBar structure contains three members, as described in Programming
Exercise 5. Write a program that creates an array of three candyBar structures, ini-
tializes them to values of your choice, and then displays the contents of each struc-
ture.

William Wingate runs a pizza-analysis service. For each pizza, he needs to record
the following information:

= The name of the pizza company, which can consist of more than one word
= The diameter of the pizza
= The weight of the pizza

Devise a structure that can hold this information and write a program that uses a
structure variable of that type. The program should ask the user to enter each of the
preceding items of information, and then the program should display that informa-
tion. Use cin (or its methods) and cout.

Do Programming Exercise 7 but use new to allocate a structure instead of declaring
a structure variable. Also have the program request the pizza diameter before it
requests the pizza company name.

Do Programming Exercise 6, but instead of declaring an array of three CandyBar
structures, use new to allocate the array dynamically.

Write a program that requests the user to enter three times for the 40-yd dash (or
40-meter, if you prefer) and then displays the times and the average. Use an array
object to hold the data. (Use a built-in array if array is not available.)

193

This page intentionally left blank

5

Loops and Relational

In this chapter you’ll learn about the following:

The for loop

Expressions and statements

The increment and decrement operators: ++ and - -
Combination assignment operators
Compound statements (blocks)

The comma operator

Relational operators: >, >=, ==, <=, <,and !=
The while loop

The typedef facility

The do while loop

The get () character input method

The end-of-file condition

Nested loops and two-dimensional arrays

Expressions

Computers do more than store data. They analyze, consolidate, rearrange, extract, mod-
ify, extrapolate, synthesize, and otherwise manipulate data. Sometimes they even distort
and trash data, but we’ll try to steer clear of that kind of behavior. To perform their
manipulative miracles, programs need tools for performing repetitive actions and for mak-
ing decisions. Of course, C++ provides such tools. Indeed, it uses the same for loops,
while loops, do while loops, if statements, and switch statements that regular C
employs, so if you know C, you can zip through this chapter and Chapter 6, “Branching
Statements and Logical Operators.” (But don't zip too fast—you don’t want to miss how
cin handles character input!) These various program control statements often use rela-

tional expressions and logical expressions to govern their behavior. This chapter discusses

196

Chapter 5 Loops and Relational Expressions

loops and relational expressions, and Chapter 6 follows up with branching statements and
logical expressions.

Introducing £or Loops

Circumstances often call on a program to perform repetitive tasks, such as adding together
the elements of an array one by one or printing some paean to productivity 20 times. The
C++ for loop makes such tasks easy to do. Let’s look at a loop in Listing 5.1, see what it
does, and then discuss how it works.

Listing 5.1 forloop.cpp

// forloop.cpp -- introducing the for loop
#include <iostream>
int main()
{
using namespace std;
int i; // create a counter
// initialize; test ; update
for (i = 0; 1 < 5; i++)
cout << "C++ knows loops.\n";
cout << "C++ knows when to stop.\n";
return 0;

Here is the output from the program in Listing 5.1:

C++ knows loops.
C++ knows loops.
C++ knows loops.
C++ knows loops.
C++ knows loops.
C++ knows when to stop.

This loop begins by setting the integer i to O:
i=0

This is the loop initialization part of the loop. Then in the loop fest, the program tests
whether i is less than 5:
i<5

If it is, the program executes the following statement, which is termed the loop body:
cout << "C++ knows loops.\n";

Then the program uses the loop update part of the loop to increase i by 1:

i++

Introducing for Loops

The loop update part of the loop uses the ++ operator, called the increment operator. It
increments the value of its operand by 1. (The increment operator is not restricted to for
loops. For example, you can use i++; instead of i = i + 1; as a statement in a program.)
Incrementing i completes the first cycle of the loop.

Next, the loop begins a new cycle by comparing the new i value with 5. Because the
new value (1) is also less than 5, the loop prints another line and then finishes by incre-
menting i again. That sets the stage for a fresh cycle of testing, executing a statement, and
updating the value of i.The process continues until the loop updates i to 5. Then the
next test fails, and the program moves on to the next statement after the loop.

Parts of a for Loop

A for loop provides a step-by-step recipe for performing repeated actions. Let’s take a
more detailed look at how it’s set up. The usual parts of a for loop handle these steps:

1. Setting a value initially

2. Performing a test to see whether the loop should continue
3. Executing the loop actions
4.

Updating value(s) used for the test

The C++ loop design positions these elements so that you can spot them at a glance.
The initialization, test, and update actions constitute a three-part control section enclosed
in parentheses. Each part is an expression, and semicolons separate the expressions from
each other. The statement following the control section is called the body of the loop, and
it is executed as long as the test expression remains true:
for (initialization; test-expression; update-expression)

body

C++ syntax counts a complete for statement as a single statement, even though it can
incorporate one or more statements in the body portion. (Having more than one state-
ment requires using a compound statement, or block, as discussed later in this chapter.)

The loop performs initialization just once. Typically, programs use this expression to set
a variable to a starting value and then use the variable to count loop cycles.

test-expression determines whether the loop body gets executed. Typically, this
expression is a relational expression—that is, one that compares two values. Our example
compares the value of i to 5, checking whether i is less than 5. If the comparison is true,
the program executes the loop body. Actually, C++ doesn’t limit test-expression to
true/false comparisons.You can use any expression, and C++ will type cast it to type
bool.Thus, an expression with a value of 0 is converted to the bool value false, and the
loop terminates. If the expression evaluates to nonzero, it is type cast to the bool value
true, and the loop continues. Listing 5.2 demonstrates this by using the expression i as
the test condition. (In the update section, i-- is similar to i++ except that it decreases the
value of i by 1 each time it’s used.)

197

198

Chapter 5 Loops and Relational Expressions

Listing 5.2 num test.cpp

// num _test.cpp -- use numeric test in for loop
#include <iostreams>
int main()
{
using namespace std;
cout << "Enter the starting countdown value: ";
int limit;
cin >> limit;

int i;

for (i = limit; 1i; i--) // quits when i is 0
cout << "1 = " << 1 << "\n";

cout << "Done now that i = " << 1 << "\n";

return 0;

Here is the output from the program in Listing 5.2:

Enter the starting countdown value: 4

i=4
i=3
i=2
i=1

Done now that i = 0

Note that the loop terminates when i reaches 0.

How do relational expressions, such as i < 5, fit into this framework of terminating a
loop with a 0 value? Before the bool type was introduced, relational expressions evaluated
to 1 if true and O if false. Thus, the value of the expression 3 < 5 was 1, and the value of
5 < 5 was 0. Now that C++ has added the bool type, however, relational expressions
evaluate to the bool literals true and false instead of 1 and 0.This change doesn’t lead
to incompatibilities, however, because a C++ program converts true and false to 1 and
0 where integer values are expected, and it converts 0 to false and nonzero to true
where bool values are expected.

The for loop is an entry-condition loop. This means the test expression is evaluated
before each loop cycle. The loop never executes the loop body when the test expression is
false. For example, suppose you rerun the program in Listing 5.2 but give 0 as a starting
value. Because the test condition fails the very first time it’s evaluated, the loop body
never gets executed:

Enter the starting countdown value: 0
Done now that i = 0

This look-before-you-loop attitude can help keep a program out of trouble.
update-expression is evaluated at the end of the loop, after the body has been exe-
cuted. Typically, it’s used to increase or decrease the value of the variable keeping track of

Introducing for Loops 199

the number of loop cycles. However, it can be any valid C++ expression, as can the other
control expressions. This makes the for loop capable of much more than simply counting
from O to 5, the way the first loop example does.You'll see some examples of this later.

The for loop body consists of a single statement, but you’ll soon learn how to stretch
that rule. Figure 5.1 summarizes the for loop design.

statement1i

for (int_expr; test_expr; update_expr)
statement2

statement3

statement1

for loop

update_expr

statement2

statement3

Figure 5.1 The design of for loops.

A for statement looks something like a function call because it uses a name followed
by paired parentheses. However, for’s status as a C++ keyword prevents the compiler
from thinking for is a function. It also prevents you from naming a function for.

Tip
Common C++ style is to place a space between for and the following parenthesis and to
omit space between a function name and the following parenthesis:

for (1 = 6; 1 < 10; i++)
smart_function(i);

200

Chapter 5 Loops and Relational Expressions

Other control statements, such as if and while, are treated similarly to for. This serves
to visually reinforce the distinction between a control statement and a function call. Also
common practice is to indent the body of a for statement to make it stand out visually.

Expressions and Statements

A for control section uses three expressions. Within its self-imposed limits of syntax, C++
is a very expressive language. Any value or any valid combination of values and operators
constitute an expression. For example, 10 is an expression with the value 10 (no surprise),
and 28 * 20 is an expression with the value 560. In C++ every expression has a value.
Often the value is obvious. For example, the following expression is formed from two val-
ues and the addition operator, and it has the value 49:

22 + 27

Sometimes the value is less obvious. For example, the following is an expression
because it’s formed from two values and the assignment operator:

x = 20

C++ defines the value of an assignment expression to be the value of the member on
the left, so the expression has the value 20. The fact that assignment expressions have val-
ues permits statements such as the following:

maids = (cooks = 4) + 3;

The expression cooks = 4 has the value 4,50 maids is assigned the value 7. However,
just because C++ permits this behavior doesn’t mean you should encourage it. But the
same rule that makes this peculiar statement possible also makes the following useful state-
ment possible:

x:y:z:O;

This is a fast way to set several variables to the same value. The precedence table (see
Appendix D, “Operator Precedence”) reveals that assignment associates right-to-left, so
first o is assigned to z, and then z = 0 is assigned to y, and so on.

Finally, as mentioned previously, relational expressions such as x < y evaluate to the
bool values true or false.The short program in Listing 5.3 illustrates some points about
expression values. The << operator has higher precedence than the operators used in the
expressions, so the code uses parentheses to enforce the correct order.

Listing 5.3 express.cpp

// express.cpp -- values of expressions
#include <iostream>
int main()

using namespace std;

int x;

cout << "The expression x = 100 has the value ";

the

the

//a
the

the

cout << (x = 100) << endl;

cout << "Now x = " << X << endl;
cout << "The expression x < 3 has
cout << (x < 3) << endl;

cout << "The expression x > 3 has
cout << (x > 3) << endl;
cout.setf (ios_base::boolalpha) ;
cout << "The expression x < 3 has
cout << (x < 3) << endl;

cout << "The expression x > 3 has
cout << (x > 3) << endl;

return 0;

value

value

newer
value

value

Introducing for Loops

C++ feature

Here is the output from the program in Listing 5.3:

The
Now
The
The
The
The

expression x
x = 100

expression
expression
expression

HoW X X

expression

<

>

<

>

100 has the value 100

3 has
3 has
3 has
3 has

the
the
the
the

value
value
value
value

0

1
false
true

Normally, cout converts bool values to int before displaying them, but the

cout.setf (ios::boolalpha) function call sets a flag that instructs cout to display the

words true and false instead of 1 and o.

Note

A C++ expression is a value or a combination of values and operators, and every C++

expression has a value.

To evaluate the expression x

uation has a side effect. Thus, evaluating an assignment expression has the side effect of
changing the assignee’s value.You might think of assignment as the intended effect, but
from the standpoint of how C++ is constructed, evaluating the expression is the primary
effect. Not all expressions have side effects. For example, evaluating x + 15 calculates a
new value, but it doesn’t change the value of x. But evaluating ++x + 15 does have a side

= 100, C++ must assign the value 100 to x. When the
very act of evaluating an expression changes the value of data in memory, we say the eval-

effect because it involves incrementing x.

From expression to statement is a short step; you just add a semicolon. Thus, the fol-

lowing is an expression:

age

= 100

Whereas the following is a statement:

age

= 100;

201

202

Chapter 5 Loops and Relational Expressions

More particularly, it is an expression statement. Any expression can become a statement if
you add a semicolon, but the result might not make programming sense. For example, if
rodents is a variable, then the following is a valid C++ statement:

rodents + 6; // valid, but useless, statement

The compiler allows it, but the statement doesn’t accomplish anything useful. The pro-
gram merely calculates the sum, does nothing with it, and goes on to the next statement.
(A smart compiler might even skip the statement.)

Nonexpressions and Statements
Some concepts, such as knowing the structure of a for loop, are crucial to understanding
C++. But there are also relatively minor aspects of syntax that can suddenly bedevil you
just when you think you understand the language. We’ll look at a couple of them now.
Although it is true that adding a semicolon to any expression makes it a statement, the
reverse is not true. That is, removing a semicolon from a statement does not necessarily
convert it to an expression. Of the kinds of statements we’ve used so far, return statements,
declaration statements, and for statements don’t fit the statement = expression + semicolon
mold. For example, this is a statement:

int toad;

But the fragment int toad is not an expression and does not have a value. This makes
code such as the following invalid:
eggs = int toad * 1000; // invalid, not an expression
cin >> int toad; // can’'t combine declaration with cin

Similarly, you can’t assign a for loop to a variable. In the following example, the for
loop is not an expression, so it has no value and you can’t assign it:

int fx = for (i = 0; i< 4; i++)
cout >> i; // not possible

Bending the Rules
C++ adds a feature to C loops that requires some artful adjustments to the for loop syn-
tax. This was the original syntax:

for (expression; expression; expression)
statement

In particular, the control section of a for structure consisted of three expressions, as
defined earlier in this chapter, separated by semicolons. C++ loops allow you do to things
like the following, however:

for (int 1 = 0; 1 < 5; 1i++4)
That is, you can declare a variable in the initialization area of a for loop.This can be

convenient, but it doesn’t fit the original syntax because a declaration is not an expression.
This once outlaw behavior was originally accommodated by defining a new kind of

Introducing for Loops

expression, the declaration-statement expression, which was a declaration stripped of the semi-
colon, and which could appear only in a for statement. That adjustment has been dropped,
however. Instead, the syntax for the for statement has been modified to the following:

for (for-init-statement condition; expression)
statement

At first glance, this looks odd because there is just one semicolon instead of two. But
that’s okay because for-init-statement is identified as a statement, and a statement has
its own semicolon. As for for-init-statement, it’s identified as either an expression-
statement or a declaration. This syntax rule replaces an expression followed by a semicolon
with a statement, which has its own semicolon. What this boils down to is that C++ pro-
grammers want to be able to declare and initialize a variable in a for loop initialization,
and they’ll do whatever is necessary to C++ syntax and to the English language to make
it possible.

There’s a practical aspect to declaring a variable in for-init-statement that you
should know about. Such a variable exists only within the for statement. That is, after the
program leaves the loop, the variable is eliminated:
for (int 1 = 0; 1 < 5; 1i++)

cout << "C++ knows loops.\n";
cout << 1 << endl; // oops! i no longer defined

Another thing you should know is that some older C++ implementations follow an
earlier rule and treat the preceding loop as if i were declared before the loop, thus making
it available after the loop terminates.

Back to the for Loop

Let’s be a bit more ambitious with loops. Listing 5.4 uses a loop to calculate and store the
first 16 factorials. Factorials, which are handy for computing odds, are calculated the fol-
lowing way. Zero factorial, written as 0!, is defined to be 1. Then, 1!is 1 * 0!, or 1. Next,
2l'is 2 * 11, or 2.Then, 3! is 3 * 2!, or 6, and so on, with the factorial of each integer being
the product of that integer with the preceding factorial. (One of the late pianist-comedian
Victor Borge’s best-known monologues featured phonetic punctuation, in which the
exclamation mark is pronounced something like phfttt pptz, with a moist accent. How-

ever, in this case, “!” is pronounced “factorial.”) The program uses one loop to calculate
the values of successive factorials, storing them in an array. Then it uses a second loop to

display the results. Also the program introduces the use of external declarations for values.

Listing 5.4 formore.cpp

// formore.cpp -- more looping with for

#include <iostreams

const int ArSize = 16; // example of external declaration
int main()

{

long long factorials[ArSize];

203

204

Chapter 5 Loops and Relational Expressions

factorials[1l] = factorials[0] = 1LL;
for (int i = 2; 1 < ArSize; i++)

factorials[i] = i * factorials[i-1];
for (int 1 = 0; 1 < ArSize; i++)

std::cout << i << "! = " << factorials[i] << std::endl;
return 0;
}
Here is the output from the program in Listing 5.4:
0!l =1
1l =1
21 =2
31 =6
4! = 24
5! =120
6! = 720
7! = 5040
8! = 40320
9! = 362880

10! = 3628800

11! = 39916800

12! = 479001600

13! = 6227020800
14! = 87178291200
15! = 1307674368000

Factorials get big fast!

Note
This listing uses the 1long long type. If your system doesn’t have that type available, you

can use double. However, the integer format gives a nicer visual representation of how the
numbers grow larger.

Program Notes

The program in Listing 5.4 creates an array to hold the factorial values. Element 0 is 0!,
element 1 is 1!, and so on. Because the first two factorials equal 1, the program sets the
first two elements of the factorials array to 1.0. (Remember, the first element of an
array has an index value of 0.) After that, the program uses a loop to set each factorial to
the product of the index with the previous factorial. The loop illustrates that you can use
the loop counter as a variable in the body of the loop.

The program in Listing 5.4 demonstrates how the for loop works hand-in-hand with
arrays by providing a convenient means to access each array member in turn. Also
formore.cpp uses const to create a symbolic representation (ArsSize) for the array size.
Then it uses Arsize wherever the array size comes into play, such as in the array

Introducing for Loops

definition and in the limits for the loops handling the array. Now, if you wish to extend
the program to, say, 20 factorials, you just have to set Arsize to 20 in the program and

recompile. By using a symbolic constant, you avoid having to change every occurrence of
16 to 20 individually.

Tip
It's usually a good idea to define a const value to represent the number of elements in an

array. You can use the const value in the array declaration and in all other references to the
array size, such as in a for loop.

The limit expression i < ArSize reflects the fact that subscripts for an array with
Arsize elements run from o0 to ArSize - 1,so the array index should stop one short
of Arsize.You could use the test i <= ArSize - 1 instead, but it looks awkward in
comparison.

Note that the program declares the const int variable Arsize outside the body of
main().As the end of Chapter 4,“Compound Types,” mentions, this makes ArSize exter-
nal data. The two consequences of declaring Arsize in this fashion are that Arsize exists
for the duration of the program and that all functions in the program file can use it. In this
particular case, the program has just one function, so declaring Arsize externally has little
practical effect. But multifunction programs often benefit from sharing external constants,
so we’ll practice using them next.

Also this example reminds us that we can use std: : instead of a using directive to
make selected standard names available.

Changing the Step Size

So far the loop examples in this chapter have increased or decreased the loop counter by
one in each cycle.You can change that by changing the update expression. The program in
Listing 5.5, for example, increases the loop counter by a user-selected step size. Rather
than use i++ as the update expression, it uses the expression i = i + by, where by is the
user-selected step size.

Listing 5.5 bigstep.cpp

// bigstep.cpp -- count as directed
#include <iostream>
int main()

{

using std::cout; // a using declaration
using std::cin;

using std::endl;

cout << "Enter an integer: ";

int by;

205

206 Chapter 5 Loops and Relational Expressions

cin >> by;

cout << "Counting by " << by << "s:\n";

for (int i = 0; 1 < 100; 1 = 1 + by)
cout << 1 << endl;

return 0;

Here is a sample run of the program in Listing 5.5:

Enter an integer: 17
Counting by 17s:

0

17

34

51

68

85

When 1 reaches the value 102, the loop quits. The main point here is that the update
expression can be any valid expression. For example, if you want to square i and add 10 in
each cycle,youcanuse i = i * i + 10.

Another point to note is that it often is a better idea to test for inequality than equality.
For example, the test i == 100 would have failed in this case because i skips over the
value 100.

Finally, this example illustrates the use of using declarations instead of a using directive.

Inside Strings with the for Loop

The for loop provides a direct way to access each character in a string in turn. For exam-
ple, Listing 5.6 enables you to enter a string and then displays the string character-by-
character, in reverse order.You could use either a string class object or an array of char
in this example because both allow you to use array notation to access individual charac-
ters in a string; Listing 5.6 uses a string class object. The string class size () method
yields the number of characters in the string; the loop uses that value in its initializing
expression to set i to the index of the last character in the string, not counting the null
character. To count backward, the program uses the decrement operator (--) to decrease
the array subscript by one in each loop. Also Listing 5.6 uses the greater-than-or-equal-to
relational operator (>=) to test whether the loop has reached the first element. We’ll sum-
marize all the relational operators soon.

Listing 5.6 forstrl.cpp

// forstrl.cpp -- using for with a string
#include <iostreams>

#include <string>

int main()

{

Introducing for Loops

using namespace std;
cout << "Enter a word: ";
string word;

cin >> word;

// display letters in reverse order

for (int i = word.size() - 1; 1 >= 0; i--)
cout << wordl[i];

cout << "\nBye.\n";

return 0;

Here is a sample run of the program in Listing 5.6:
Enter a word: animal

lamina
Bye.

Yes, the program succeeds in printing animal backward; choosing animal as a test
word more clearly illustrates the effect of this program than choosing, say, a palindrome
such as rotator, redder, Or stats.

The Increment (++) and Decrement (- -) Operators

C++ features several operators that are frequently used in loops; let’s take a little time to
examine them now.You've already seen two: the increment operator (++), which inspired
the name C++, and the decrement operator (--). These operators perform two exceed-
ingly common loop operations: increasing and decreasing a loop counter by one. How-
ever, there’s more to their story than you’ve seen to this point. Each operator comes in
two varieties. The prefix version comes before the operand, as in ++x. The postfix version
comes after the operand, as in x++.The two versions have the same effect on the operand,
but they differ in terms of when they take place. It’s like getting paid for mowing the lawn
in advance or afterward; both methods have the same final effect on your wallet, but they
differ in when the money gets added. Listing 5.7 demonstrates this difference for the
increment operator.

Listing 5.7 plus one.cpp

// plus_one.cpp -- the increment operator
#include <iostreams
int main()

{

using std::cout;
int a = 20;
int b = 20;

207

208

Chapter 5 Loops and Relational Expressions

cout << "a =" << a << ": b="<<Db<< "\n";
cout << "a++ = " << a++ << ": +4b = " << ++b << "\n";
cout << "a =" << a << ": b =" << b << "\n";
return 0;

Here is the output from the program in Listing 5.7:

a = 20: b = 20
a++ = 20: ++b = 21
a = 21: b =21

Roughly speaking, the notation a++ means “use the current value of a in evaluating an
expression, and then increment the value of a.” Similarly, the notation ++b means “first
increment the value of b and then use the new value in evaluating the expression.” For
example, we have the following relationships:

int x = 5;

int y = ++x; // change x, then assign to y
// v is 6, x is 6

int z = 5;

int y = z++; // assign to y, then change z

// v is 5, z is 6

Using the increment and decrement operators is a concise, convenient way to handle
the common task of increasing or decreasing values by one.

The increment and decrement operators are nifty little operators, but don’t get carried
away and increment or decrement the same value more than once in the same statement.
The problem is that the use-then-change and change-then-use rules can become ambigu-
ous. That is, a statement such as the following can produce quite different results on difter-
ent systems:

X = 2 % X++ * (3 - ++X); // don’'t do it except as an experiment

C++ does not define correct behavior for this sort of statement.

Side Effects and Sequence Points

Let’s take a closer look at what C++ does and doesn’t say about when increment opera-
tors take effect. First, recall that a side effect is an effect that occurs when evaluating an
expression modifies something, such as a value stored in a variable. A sequence point is a
point in program execution at which all side effects are guaranteed to be evaluated before
going on to the next step. In C++ the semicolon in a statement marks a sequence point.
That means all changes made by assignment operators, increment operators, and decre-
ment operators in a statement must take place before a program proceeds to the next
statement. Some operators that we’ll discuss in later chapters have sequence points. Also
the end of any full expression is a sequence point.

Introducing for Loops

What's a full expression? It’s an expression that’s not a subexpression of a larger expres-
sion. Examples of full expressions include an expression portion of an expression state-
ment and an expression that serves as a test condition for a while loop.

Sequence points help clarify when postfix incrementation takes place. Consider, for
instance, the following code:

while (guests++ < 10)
cout << guests << endl;

(The while loop, discussed later this chapter, works like a for loop that has just a test
expression.) Sometimes C++ newcomers assume that “use the value, then increment it”
means, in this context, to increment guests after it’s used in the cout statement. However,
the guests++ < 10 expression is a full expression because it is a while loop test condi-
tion, so the end of this expression is a sequence point. Therefore, C++ guarantees that the
side effect (incrementing guests) takes place before the program moves on to cout. Using
the postfix form, however, guarantees that guests will be incremented after the compari-
son to 10 is made.

Now consider this statement:

Vv o= (4 + X++4) + (6 + X++4);

The expression 4 + x++ is not a full expression, so C++ does not guarantee that x will
be incremented immediately after the subexpression 4 + x++ is evaluated. Here the full
expression is the entire assignment statement, and the semicolon marks the sequence
point, so all that C++ guarantees is that x will have been incremented twice by the time
the program moves to the following statement. C++ does not specify whether x is incre-
mented after each subexpression is evaluated or only after all the expressions have been
evaluated, which is why you should avoid statements of this kind.

C++11 documentation has dropped the term “sequence point” because the concept
doesn’t carry over well when discussing multiple threads of execution. Instead, descriptions
are framed in terms of sequencing, with some events being described as being sequenced
before other events. This descriptive approach isn’t intended to change the rules; the goal
is to provide language that can more clearly handle multithreaded programming.

Prefixing Versus Postfixing

Clearly, whether you use the prefix or postfix form makes a difference if the value is used
for some purpose, such as a function argument or assigning to a variable. But what if the
value of an increment or decrement expression isn’t used? For example, are

X++;
and
++X;

different from one another? Or are

for (n = 1lim; n > 0; --n)

209

210

Chapter 5 Loops and Relational Expressions

and

for (n = 1lim; n > 0; n--)

.7

difterent from one another?

Logically, whether the prefix or postfix forms are used makes no difference in these two
situations. The values of the expressions aren’t used, so the only effects are the side effects.
Here the expressions using the operators are full expressions, so the side effects of incre-
menting x and decrementing n are guaranteed to be performed by the time the program
moves on to the next step; the prefix form and postfix form lead to the same final result.

However, although the choice between prefix and postfix forms has no eftect on the
program’s behavior, it is possible for the choice to have a small effect on execution speed.
For built-in types and modern compilers, this seems to be a non issue. But C++ lets you
define these operators for classes. In that case, the user defines a prefix function that works
by incrementing a value and then returning it. But the postfix version works by first stash-
ing a copy of the value, incrementing the value, and then returning the stashed copy. Thus,
for classes, the prefix version is a bit more efficient than the postfix version.

In short, for built-in types, it most likely makes no difference which form you use. For
user-defined types having user-defined increment and decrement operators, the prefix
form is more efficient.

The Increment/Decrement Operators and Pointers

You can use increment operators with pointers as well as with basic variables. Recall that
adding an increment operator to a pointer increases its value by the number of bytes in
the type it points to. The same rule holds for incrementing and decrementing pointers:

double arr[5] = {21.1, 32.8, 23.4, 45.2, 37.4};
double *pt = arr; // pt points to arr[0], i.e. to 21.1
++pt; // pt points to arr[l], i.e. to 32.8

You can also use these operators to change the quantity a pointer points to by using
them in conjunction with the * operator. Applying both * and ++ to a pointer raises the
questions of what gets dereferenced and what gets incremented. Those actions are deter-
mined by the placement and precedence of the operators. The prefix increment, prefix
decrement, and dereferencing operators all have the same precedence and associate from
right to left. The postfix increment and decrement operators both have the same prece-
dence, which is higher than the prefix precedence. These two operators associate from left
to right.

The right-to-left association rule for prefix operators implies that *++pt means first
apply ++ to pt (because the ++ is to the right of the *) and then apply * to the new
value of pt:

double x = *++pt; // increment pointer, take the value; i.e., arr([2], or 23.4

Introducing for Loops

On the other hand, ++*pt means obtain the value that pt points to and then increment
that value:

++*pt; // increment the pointed to value; i.e., change 23.4 to 24.4
Here, pt remains pointing to arr[2].
Next, consider this combination:
(*pt) ++; // increment pointed-to value
The parentheses indicate that first the pointer is dereferenced, yielding 24 .4.Then the

++ operator increments that value to 25.4; pt remains pointing at arr [2].
Finally, consider this combination:

X = *pt++; // dereference original location, then increment pointer

The higher precedence of the postfix ++ operator means the ++ operator operates on
pt, not on *pt, so the pointer is incremented. But the fact that the postfix operator is used
means that the address that gets dereferenced is the original address, sarr[2], not the new

address. Thus, the value of *pt++ is arr[2], or 25.4, but the value of pt after the state-
ment completes is the address of arr [3].

Note

Incrementing and decrementing pointers follow pointer arithmetic rules. Thus, if pt points to
the first member of an array, ++pt changes pt so that it points to the second member.

Combination Assignment Operators
Listing 5.5 uses the following expression to update a loop counter:
i=1i+by

C++ has a combined addition and assignment operator that accomplishes the same
result more concisely:
i += by

The += operator adds the values of its two operands and assigns the result to the
operand on the left. This implies that the left operand must be something to which you

can assign a value, such as a variable, an array element, a structure member, or data you
identify by dereferencing a pointer:

int k = 5;

k += 3; // ok, k set to 8

int *pa = new int[10]; // pa points to pal0

pal4] = 12;

pald] += 6; // ok, pal4] set to 18

*(pa + 4) += 7; // ok, pal4] set to 25

pa += 2; // ok, pa points to the former pal[2]

34 += 10; // quite wrong

211

212 Chapter 5 Loops and Relational Expressions

Each arithmetic operator has a corresponding assignment operator, as summarized in
Table 5.1. Each operator works analogously to +=.Thus, for example, the following state-
ment replaces the current value of k with a value 10 times greater:

k *= 10;

Table 5.1 Combined Assignment Operators

Operator Effect (L=left operand, R=right operand)
+= Assigns L+ Rto L

-= Assigns L-Rto L

*= AssignsL * Rto L

/= AssignsL/ Rto L

%= Assigns L% Rto L

Compound Statements, or Blocks

The format, or syntax, for writing a C++ for statement might seem restrictive to you
because the body of the loop must be a single statement. That’s awkward if you want the
loop body to contain several statements. Fortunately, C++ provides a syntax loophole
through which you may stuff as many statements as you like into a loop body. The trick is
to use paired braces to construct a compound statement, or block. The block consists of paired
braces and the statements they enclose and, for the purposes of syntax, counts as a single
statement. For example, the program in Listing 5.8 uses braces to combine three separate
statements into a single block. This enables the body of the loop to prompt the user, read
input, and do a calculation. The program calculates the running sum of the numbers you
enter, and this provides a natural occasion for using the += operator.

Listing 5.8 block.cpp

// block.cpp -- use a block statement
#include <iostreams>
int main()
{
using namespace std;
cout << "The Amazing Accounto will sum and average ";
cout << "five numbers for you.\n";
cout << "Please enter five values:\n";
double number;
double sum = 0.0;
for (int i = 1; 1 <= 5; i++)
{ // block starts here
cout << "Value " << i << ": ";
cin >> number;
sum += number;
} // block ends here

Introducing for Loops

cout << "Five exquisite choices indeed! ";

cout << "They sum to " << sum << endl;

cout << "and average to " << sum / 5 << ".\n";
cout << "The Amazing Accounto bids you adieu!\n";
return 0;

Here is a sample run of the program in Listing 5.8:

The Amazing Accounto will sum and average five numbers for you.
Please enter five values:

Value 1: 1942
Value 2: 1948
Value 3: 1957
Value 4: 1974

Value 5: 1980

Five exquisite choices indeed! They sum to 9801
and average to 1960.2.

The Amazing Accounto bids you adieu!

Suppose you leave in the indentation but omit the braces:
for (int 1 = 1; 1 <= 5; i++)
cout << "Value " << i << ": "; // loop ends here
cin >> number; // after the loop
sum += number;
cout << "Five exquisite choices indeed! ";

The compiler ignores indentation, so only the first statement would be in the loop.
Thus, the loop would print the five prompts and do nothing more. After the loop com-
pletes, the program moves to the following lines, reading and summing just one number.

Compound statements have another interesting property. If you define a new variable
inside a block, the variable persists only as long as the program is executing statements
within the block. When execution leaves the block, the variable is deallocated. That means
the variable is known only within the block:

#include <iostreams>
int main()
{
using namespace std;
int x = 20;
{ // block starts
int y = 100;
cout << x << endl; // ok
cout << y << endl; // ok

} // block ends
cout << x << endl; // ok
cout << y << endl; // invalid, won’t compile

return 0;

213

214

Chapter 5 Loops and Relational Expressions

Note that a variable defined in an outer block is still defined in the inner block.

What happens if you declare a variable in a block that has the same name as one out-
side the block? The new variable hides the old one from its point of appearance until the
end of the block. Then the old one becomes visible again, as in this example:

#include <iostream>
int main()
using std::cout;
using std::endl;

int x = 20; // original x
{ // block starts
cout << X << endl; // use original x
int x = 100; // new x
cout << X << endl; // use new x
} // block ends
cout << x << endl; // use original x
return 0;

More Syntax Tricks—The Comma Operator

As you have seen, a block enables you to sneak two or more statements into a place where
C++ syntax allows just one statement. The comma operator does the same for expres-
sions, enabling you to sneak two expressions into a place where C++ syntax allows only
one expression. For example, suppose you have a loop in which one variable increases by
one each cycle and a second variable decreases by one each cycle. Doing both in the
update part of a for loop control section would be convenient, but the loop syntax allows
just one expression there. The solution is to use the comma operator to combine the two
expressions into one:

++j, --1 // two expressions count as one for syntax purposes

The comma is not always a comma operator. For example, the comma in this declara-
tion serves to separate adjacent names in a list of variables:

int i, j; // comma is a separator here, not an operator

Listing 5.9 uses the comma operator twice in a program that reverses the contents of a
string class object. (You could also write the program by using an array of char, but the
length of the word would be limited by your choice of array size.) Note that Listing 5.6
displays the contents of an array in reverse order, but Listing 5.9 actually moves characters
around in the array. The program in Listing 5.9 also uses a block to group several state-
ments into one.

Introducing for Loops

Listing 5.9 forstr2.cpp

// forstr2.cpp -- reversing an array
#include <iostreams>
#include <string»>
int main()
{
using namespace std;
cout << "Enter a word: ";
string word;

cin >> word;

// physically modify string object

char temp;
int i, j;
for (j = 0, 1 = word.size() - 1; j < i; --1, ++3)
{ // start block
temp = word[i];
word[i] = word[j];
word[j] = temp;
} // end block

cout << word << "\nDone\n";
return 0;

Here is a sample run of the program in Listing 5.9:
Enter a word: stressed

desserts
Done

By the way, the string class offers more concise ways to reverse a string, but we’ll
leave those for Chapter 16,“The string Class and the Standard Template Library.”

Program Notes

Look at the for control section of the program in Listing 5.9. First, it uses the comma
operator to squeeze two initializations into one expression for the first part of the control
section. Then it uses the comma operator again to combine two updates into a single
expression for the last part of the control section.

Next, look at the body. The program uses braces to combine several statements into a
single unit. In the body, the program reverses the word by switching the first element of
the array with the last element. Then it increments j and decrements i so that they now
refer to the next-to-the-first element and the next-to-the-last element. After this is done,
the program swaps those elements. Note that the test condition j<i makes the loop stop
when it reaches the center of the array. If it were to continue past that point, it would
begin swapping the switched elements back to their original positions (see Figure 5.2).

215

216 Chapter 5 Loops and Relational Expressions

|]' =0, i = 4 Swap word [0] with word [4].|

[P lefrft]s]
index O 1 2 3 4

[slafrfe]e
index O 1 2 3 4

| i--; j++ Swap word [1] with word [3]. |

Lslalrft]r|
1 4

2 3

index 0

Lole]r]

index O 1 2 3

QO

e
4

| --i,++j Now j<1 becomes false so loop terminates.

Figure 5.2 Reversing a string.

Another thing to note is the location for declaring the variables temp, i, and j.The
code declares i and j before the loop because you can’t combine two declarations with a
comma operator. That’s because declarations already use the comma for another pur-
pose—separating items in a list. You can use a single declaration-statement expression to
create and initialize two variables, but it’s a bit confusing visually:

int j = 0, 1 = word.size() - 1;
In this case the comma is just a list separator, not the comma operator, so the expres-

sion declares and initializes both j and i. However, it looks as if it declares only 5.
Incidentally, you can declare temp inside the for loop:

int temp = word[il;

This may result in temp being allocated and deallocated in each loop cycle. This might
be a bit slower than declaring temp once before the loop. On the other hand, after the
loop is finished, temp is discarded if it’s declared inside the loop.

Comma Operator Tidbits

By far the most common use for the comma operator is to fit two or more expressions
into a single for loop expression. But C++ does provide the operator with two additional
properties. First, it guarantees that the first expression is evaluated before the second

Introducing for Loops

expression. (In other words, the comma operator is a sequence point.) Expressions such as
the following are safe:

i=20, j=2%*i1 // 1 set to 20, then j set to 40

Second, C++ states that the value of a comma expression is the value of the second
part of the expression. The value of the preceding expression, for example, is 40 because
that is the value of § = 2 * i.

The comma operator has the lowest precedence of any operator. For example, this
statement:

cata = 17,240;

gets read as this:

(cats = 17), 240;

That is, cats is set to 17, and 240 does nothing. But because parentheses have high
precedence, the following results in cats being set to 240, the value of the expression on
the right of the comma:

cats = (17,240);

Relational Expressions

Computers are more than relentless number crunchers. They have the capability to com-
pare values, and this capability is the foundation of computer decision making. In C++
relational operators embody this ability. C++ provides six relational operators to compare
numbers. Because characters are represented by their ASCII codes, you can use these
operators with characters, too. They don’t work with C-style strings, but they do work
with string class objects. Each relational expression reduces to the bool value true if the
comparison is true and to the bool value false if the comparison is false, so these opera-
tors are well suited for use in a loop test expression. (Older implementations evaluate true
relational expressions to 1 and false relational expressions to 0.) Table 5.2 summarizes these
operators.

Table 5.2 Relational Operators

Operator Meaning

<< Is less than

<= Is less than or equal to
== Is equal to

> Is greater than

>= Is greater than or equal to

1= Is not equal to

217

218

Chapter 5 Loops and Relational Expressions

The six relational operators exhaust the comparisons C++ enables you to make for
numbers. If you want to compare two values to see which is the more beautiful or the
luckier, you must look elsewhere.

Here are some sample tests:

for (x = 20; x > 5; x--) // continue while x is greater than 5
for (x = 1; y != x; ++x) // continue while y is not equal to x
for (cin >> x; x == 0; cin >> x)) // continue while x is 0

The relational operators have a lower precedence than the arithmetic operators. That
means this expression:

X+3 >y -2 // Expression 1

corresponds to this:

(x +3) > (y - 2) // Expression 2

and not to the following:

X+ (3 >y) -2 // Expression 3

Because the expression (3 > y) is either 1 or 0 after the bool value is promoted to
int, Expressions 2 and 3 are both valid. But most of us would want Expression 1 to mean
Expression 2, and that is what C++ does.

Assignment, Comparison, and a Mistake You’ll Probably Make

Don’t confuse testing the is-equal-to operator (==) with the assignment operator (=). This
expression asks the musical question “Is musicians equal to 42"

musicians == // comparison

The expression has the value true or false.This expression assigns the value 4 to

musicians:

musicians = 4 // assignment

The whole expression, in this case, has the value 4 because that’s the value of the left side.

The flexible design of the for loop creates an interesting opportunity for error. If you
accidentally drop an equals sign (=) from the == operator and use an assignment expression
instead of a relational expression for the test part of a for loop, you still produce valid
code. That’s because you can use any valid C++ expression for a for loop test condition.
Remember that nonzero values test as true, and zero tests as false. An expression that
assigns 4 to musicians has the value 4 and is treated as true. If you come from a lan-
guage, such as Pascal or BASIC, that uses = to test for equality, you might be particularly
prone to this slip.

Listing 5.10 shows a situation in which you can make this sort of error. The program
attempts to examine an array of quiz scores and stops when it reaches the first score that’s
not 20. It shows a loop that correctly uses comparison and then one that mistakenly uses
assignment in the test condition. The program also has another egregious design error that

Introducing for Loops

you’ll see how to fix later. (You learn from your mistakes, and Listing 5.10 is happy to help
in that respect.)

Listing 5.10 equal.cpp

// equal.cpp -- equality vs assignment
#include <iostream>
int main()
{
using namespace std;
int quizscores[10] =
{ 20, 20, 20, 20, 20, 19, 20, 18, 20, 20};

cout << "Doing it right:\n";

int 1i;

for (i = 0; quizscores[i] == 20; i++)

cout << "quiz " << i << " is a 20\n";

// Warning: you may prefer reading about this program
// to actually running it.

cout << "Doing it dangerously wrong:\n";

for (i = 0; quizscores[i] = 20; i++)

cout << "quiz " << i << " is a 20\n";

return 0;

Because the program in Listing 5.10 has a serious problem, you might prefer reading
about it to actually running it. Here is some sample output from the program:

Doing it right:
quiz is a 20
quiz is a 20

is a 20

0
1

quiz 2 is a 20
quiz 3
4

quiz is a 20

Doing it dangerously wrong:

quiz 0 is a 20
quiz 1 is a 20
quiz 2 is a 20
quiz 3 is a 20
quiz 4 is a 20
quiz 5 is a 20
quiz 6 is a 20
quiz 7 is a 20
quiz 8 is a 20
quiz 9 is a 20
quiz 10 is a 20

219

220

Chapter 5 Loops and Relational Expressions

quiz 11 is a 20
quiz 12 is a 20
quiz 13 is a 20

The first loop correctly halts after displaying the first five quiz scores. But the second
starts by displaying the whole array. Worse than that, it says every value is 20. And worse
still, it doesn’t stop at the end of the array! And worst of all, the program can (although not
necessarily) freeze other applications running at the time and require a computer reboot.

‘Where things go wrong, of course, is with the following test expression:

quizscores[i] = 20

First, simply because it assigns a nonzero value to the array element, the expression is
always nonzero, hence always true. Second, because the expression assigns values to the
array elements, it actually changes the data.Third, because the test expression remains true,
the program continues changing data beyond the end of the array. It just keeps putting
more and more 20s into memory! This is not good.

The difficulty with this kind of error is that the code is syntactically correct, so the
compiler won’t tag it as an error. (However, years and years of C and C++ programmers
making this error has eventually led many compilers to issue a warning, asking if that’s
what you really meant to do.)

Caution
Don’t use = to compare for equality; use ==.

Like C, C++ grants you more freedom than most programming languages. This comes
at the cost of requiring greater responsibility on your part. Nothing but your own good
planning prevents a program from going beyond the bounds of a standard C++ array.
However, with C++ classes, you can design a protected array type that prevents this sort
of nonsense. Chapter 13, “Class Inheritance,” provides an example. For now, you should
build the protection into your programs when you need it. For example, the loop in
Listing 5.10 should include a test that keeps it from going past the last member. That’s true
even for the “good” loop. If all the scores were 20s, the “good” loop, too, would exceed
the array bounds. In short, the loop needs to test the values of the array and the array
index. Chapter 6 shows how to use logical operators to combine two such tests into a sin-
gle condition.

Comparing C-Style Strings
Suppose you want to see if a string in a character array is the word mate. If word is the
array name, the following test might not do what you think it should do:

word == "mate"

Remember that the name of an array is a synonym for its address. Similarly, a quoted
string constant is a synonym for its address. Thus, the preceding relational expression

Introducing for Loops

doesn’t test whether the strings are the same; it checks whether they are stored at the same
address. The answer to that is no, even if the two strings have the same characters.

Because C++ handles C-style strings as addresses, you get little satisfaction if you try to
use the relational operators to compare strings. Instead, you can go to the C-style string
library and use the stremp () function to compare strings. This function takes two string
addresses as arguments. That means the arguments can be pointers, string constants, or
character array names. If the two strings are identical, the function returns the value 0. If
the first string precedes the second alphabetically, stremp () returns a negative value, and if’
the first string follows the second alphabetically, stremp () returns a positive value. Actually,
“in the system collating sequence” is more accurate than “alphabetically”” This means that
characters are compared according to the system code for characters. For example, in
ASCII code, uppercase letters have smaller codes than the lowercase letters, so uppercase
precedes lowercase in the collating sequence. Therefore, the string "zZoo" precedes the
string "aviary".The fact that comparisons are based on code values also means that
uppercase and lowercase letters differ, so the string "Foo" is difterent from the string "foo".

In some languages, such as BASIC and standard Pascal, strings stored in differently sized
arrays are necessarily unequal to each other. But C-style strings are defined by the termi-
nating null character, not by the size of the containing array. This means that two strings
can be identical even if they are contained in differently sized arrays:
char big[80] = "Daffy"; // 5 letters plus \0
char little[6] = "Daffy"; // 5 letters plus \0

By the way, although you can’t use relational operators to compare strings, you can use
them to compare characters because characters are actually integer types. Therefore, the
following is valid code, at least for the ASCII and Unicode character sets, for displaying
the characters of the alphabet:
for (ch = 'a'; ch <= 'z'; ch++)

cout << ch;

The program in Listing 5.11 uses stremp () in the test condition of a for loop.The
program displays a word, changes its first letter, displays the word again, and keeps going
until stremp () determines that word is the same as the string "mate". Note that the list-
ing includes the estring file because it provides a function prototype for stremp().

Listing 5.11 compstrl.cpp

// compstrl.cpp -- comparing strings using arrays
#include <iostream>

#include <cstring> // prototype for strcmp()
int main()

{

using namespace std;
char word[5] = "?ate";

221

222 Chapter 5 Loops and Relational Expressions

for (char ch = 'a'; strcmp(word, "mate"); ch++)
{
cout << word << endl;
word[0] = ch;
}
cout << "After loop ends, word is " << word << endl;
return 0;

Here is the output for the program in Listing 5.11:

?ate
aate
bate
cate
date
eate
fate
gate
hate
iate
jate
kate
late
After loop ends, word is mate

Program Notes

The program in Listing 5.11 has some interesting points. One, of course, is the test.You
want the loop to continue as long as word is not mate. That is, you want the test to con-
tinue as long as stremp () says the two strings are not the same. The most obvious test for
that 1s this:

strcmp(word, "mate") != 0 // strings are not the same

This statement has the value 1 (true) if the strings are unequal and the value 0 (false)
if they are equal. But what about stremp(word, "mate") by itself? It has a nonzero value
(true) if the strings are unequal and the value 0 (false) if the strings are equal. In essence,
the function returns true if the strings are different and false if they are the same.You
can use just the function instead of the whole relational expression. This produces the
same behavior and involves less typing. Also it’s the way C and C++ programmers have
traditionally used stremp().

Testing for Equality or Order

You can use stremp () to test C-style strings for equality or order. The following expression
is true if strl and str2 are identical:

stremp(strl,str2) ==

Introducing for Loops

The expressions
strcmp (strl, str2) != 0
and

strcmp (strl, str2)

are true if strl and str2 are not identical. The following expression is true if stri1 pre-
cedes str2:

strcmp (strl,str2) < 0

And the following expression is true if strl follows str2:
strcemp (strl, str2) > 0

Thus, the strcmp () function can play the role of the ==, ! =, <, and > operators, depending
on how you set up a test condition.

Next, compstrl.cpp uses the increment operator to march the variable ch through the
alphabet:

ch++

You can use the increment and decrement operators with character variables because
type char really is an integer type, so the operation actually changes the integer code
stored in the variable. Also note that using an array index makes it simple to change indi-
vidual characters in a string:

word [0] = ch;

Comparing string Class Strings

Life is a bit simpler if you use string class strings instead of C-style strings because the
class design allows you to use relational operators to make the comparisons. This is possi-
ble because one can define class functions that “overload,” or redefine, operators. Chapter
12,“Classes and Dynamic Memory Allocation,” discusses how to incorporate this feature
into class designs, but from a practical standpoint, all you need to know now is that you
can use the relational operators with string class objects. Listing 5.12 revises Listing 5.11
to use a string object instead of an array of char.

Listing 5.12 compstr2.cpp

// compstr2.cpp -- comparing strings using arrays
#include <iostreams

#include <string> // string class

int main()

using namespace std;
string word = "?ate";

223

224 Chapter 5 Loops and Relational Expressions

for (char ch = 'a'; word != "mate"; ch++)

cout << word << endl;

word[0] = ch;
cout << "After loop ends, word is " << word << endl;
return 0;

The output from the program in Listing 5.12 is the same as that for the program in
Listing 5.11.

Program Notes
In Listing 5.12, the following test condition uses a relational operator with a string
object on the left and a C-style string on the right:

word != "mate"

The way the string class overloads the = operator allows you to use it as long as at
least one of the operands is a string object; the remaining operand can be either a
string object or a C-style string.

The string class design allows you to use a string object as a single entity, as in the
relational test expression, or as an aggregate object for which you can use array notation
to extract individual characters.

As you can see, you can achieve the same results with C-style strings as with string
objects, but programming with string objects is simpler and more intuitive.

Finally, unlike most of the for loops you have seen to this point, the last two loops
aren’t counting loops. That is, they don’t execute a block of statements a specified number
of times. Instead, each of these loops watches for a particular circumstance (word being
"mate") to signal that it’s time to stop. More typically, C++ programs use while loops for
this second kind of test, so let’s examine that form next.

The while Loop

The while loop is a for loop stripped of the initialization and update parts; it has just a
test condition and a body:

while (test-condition)
body

First, a program evaluates the parenthesized test-condition expression. If the expres-
sion evaluates to true, the program executes the statement(s) in the body. As with a for
loop, the body consists of a single statement or a block defined by paired braces. After it
finishes with the body, the program returns to the test condition and re-evaluates it. If the
condition is nonzero, the program executes the body again. This cycle of testing and exe-
cution continues until the test condition evaluates to false (see Figure 5.3). Clearly, if

The while Loop 225

you want the loop to terminate eventually, something within the loop body must do
something to affect the test-condition expression. For example, the loop can increment
a variable used in the test condition or read a new value from keyboard input. Like the
for loop, the while loop is an entry-condition loop. Thus, if test-condition evaluates to
false at the beginning, the program never executes the body of the loop.

statementi
(test_expr)
statement2
statement3

statement1

statement2

while loop

statement3

Figure 5.3 The structure of while loops.

Listing 5.13 puts a while loop to work.The loop cycles through each character in a
string and displays the character and its ASCII code.The loop quits when it reaches the
null character. This technique of stepping through a string character-by-character until
reaching the null character is a standard C++ method for processing C-style strings.
Because a string contains its own termination marker, programs often don’t need explicit
information about how long a string is.

Listing 5.13 while.cpp

// while.cpp -- introducing the while loop
#include <iostream>
const int ArSize = 20;
int main()
{
using namespace std;
char name [ArSize] ;

226 Chapter 5 Loops and Relational Expressions

cout << "Your first name, please: ";
cin >> name;
cout << "Here is your name, verticalized and ASCIIized:\n";

int 1 = 0; // start at beginning of string
while (name[i] != '\0") // process to end of string
{
cout << name[i] << ": " << int(name[i]) << endl;
i++; // don’'t forget this step
}
return 0;

Here is a sample run of the program in Listing 5.13:

Your first name, please: Muffy
Here is your name, verticalized and ASCIIized:

M: 77
u: 117
f: 102
f: 102
y: 121

(No, verticalized and ASCllized are not real words or even good would-be words. But
they do add an endearing technoid tone to the output.)

Program Notes
The while condition in Listing 5.13 looks like this:

while (name[i] != '\0")

It tests whether a particular character in the array is the null character. For this test to
eventually succeed, the loop body needs to change the value of i. It does so by incre-
menting i at the end of the loop body. Omitting this step keeps the loop stuck on the
same array element, printing the character and its code until you manage to kill the pro-
gram. Getting such an infinite loop is one of the most common problems with loops.
Often you can cause it when you forget to update some value within the loop body.

You can rewrite the while line this way:

while (name[i])

With this change, the program works just as it did before. That’s because when name[i]
is an ordinary character, its value is the character code, which is nonzero, or true. But
when name[i] is the null character, its character-code value is 0, or false.This notation is
more concise (and more commonly used) but less clear than what Listing 5.13 uses.
Dumb compilers might produce faster code for the second version, but smart compilers
produce the same code for both.

The while Loop

To print the ASCII code for a character, the program uses a type cast to convert
name [1] to an integer type. Then cout prints the value as an integer rather than interpret
it as a character code.

Unlike a C-style string, a string class object doesn’t use a null character to identify the
end of a string, so you can’t convert Listing 5.13 to a string class version merely by
replacing the array of char with a string object. Chapter 16 discusses techniques you can
use with a string object to identify the last character.

for Versus while
In C++ the for and while loops are essentially equivalent. For example, the for loop

for (init-expression; test-expression; update-expression)

{

statement (s)

}

could be rewritten this way:

init-expression;
while (test-expression)

{

statement (s)
update-expression;

Similarly, the while loop

while (test-expression)
body

could be rewritten this way:

for (;test-expression;)
body

This for loop requires three expressions (or, more technically, one statement followed
by two expressions), but they can be empty expressions (or statements). Only the two
semicolons are mandatory. Incidentally, a missing test expression in a for loop is construed
as true, so this loop runs forever:
for (; ;)

body

Because for loops and while loops are nearly equivalent, the one you use is largely a
matter of style. There are three differences. One, as just mentioned, is that an omitted test
condition in a for loop is interpreted as true. The second is that you can use the initializ-
ing statement in a for loop to declare a variable that is local to the loop; you can’t do that
with a while loop. Finally, there 1s a slight difference if the body includes a continue
statement, which is discussed in Chapter 6. Typically, programmers use for loops for

227

228

Chapter 5 Loops and Relational Expressions

counting loops because the for loop format enables you to place all the relevant informa-
tion—initial value, terminating value, and method of updating the counter—in one place.
Programmers most often use while loops when they don’t know in advance precisely
how many times a loop will execute.

Tip
Keep in mind the following guidelines when you design a loop:

= |dentify the condition that terminates loop execution.
= |nitialize that condition before the first test.

= Update the condition in each loop cycle before the condition is tested again.

One nice thing about for loops is that their structure provides a place to implement these
three guidelines, thus helping you to remember to do so. But these guidelines apply to a
while loop, too.

Bad Punctuation

Both for loops and while loops have bodies that consist of a single statement following
the parenthesized expressions. As you've seen, that single statement can be a block, which
can contain several statements. Keep in mind that braces, not indentation, define a block.
Consider the following loop, for example:

i=0;

while (name[i] != '\0")
cout << name[i] << endl;
i++;

cout << "Done\n";

The indentation tells you that the program author intended the i++; statement to be part
of the loop body. The absence of braces, however, tells the compiler that the body con-
sists solely of the first cout statement. Thus, the loop keeps printing the first character
of the array indefinitely. The program never reaches the i++; statement because it is out-
side the loop.

The following example shows another potential pitfall:

i=0;
while (name[i] != '\0"); // problem semicolon
{
cout << name[i] << endl;
it++;
}

cout << "Done\n";

This time the code gets the braces right, but it also inserts an extra semicolon. Remember,
a semicolon terminates a statement, so this semicolon terminates the while loop. In other
words, the body of the loop is a null statement—that is, nothing followed by a semicolon. All
the material in braces now comes after the loop and is never reached. Instead, the loop
cycles, doing nothing forever. Beware the straggling semicolon.

The while Loop

Just a Moment—Building a Time-Delay Loop

Sometimes it’s useful to build a time delay into a program. For example, you might have
encountered programs that flash a message onscreen and then go on to something else
before you can read the message.You end up being afraid that you’ve missed irretrievable
information of vital importance. It would be much nicer if the program paused 5 seconds
before moving on. The while loop is handy for producing this eftect. A technique from
the early days of personal computers was to make the computer count for a while to use
up time:
long wait = 0;
while (wait < 10000)

wait++; // counting silently

The problem with this approach is that you have to change the counting limit when
you change computer processor speed. Several games written for the original IBM PC, for
example, became unmanageably fast when run on its faster successors. And these days a
compiler might even deduce that it can just set to wait to 1000 and skip the loop. A bet-
ter approach is to let the system clock do the timing for you.

The ANSI C and the C++ libraries have a function to help you do this. The function
is called clock (), and it returns the system time elapsed since a program started execu-
tion. There are a couple complications, though. First, clock () doesn’t necessarily return
the time in seconds. Second, the function’s return type might be long on some systems,
unsigned long on others, and perhaps some other type on others.

But the ctime header file (time.h on less current implementations) provides solutions
to these problems. First, it defines a symbolic constant, CLOCKS_PER_SEC, that equals the
number of system time units per second. So dividing the system time by this value yields
seconds. Or you can multiply seconds by CLOCKS PER_SEC to get time in the system units.
Second, ctime establishes clock_t as an alias for the clock () return type. (See the sidebar
“Type Aliases,” later in this chapter.) This means you can declare a variable as type
clock_t,and the compiler converts it to long or unsigned int or whatever is the proper
type for your system.

Listing 5.14 shows how to use clock () and the ctime header to create a time-delay loop.

Listing 5.14 waiting.cpp

// waiting.cpp -- using clock() in a time-delay loop
#include <iostreams
#include <ctime> // describes clock() function, clock t type
int main()
{
using namespace std;
cout << "Enter the delay time, in seconds: ";
float secs;
cin >> secs;
clock_t delay = secs * CLOCKS PER SEC; // convert to clock ticks

229

230 Chapter 5 Loops and Relational Expressions

cout << "starting\a\n";

clock_t start = clock();

while (clock() - start < delay) // wait until time elapses
; // note the semicolon

cout << "done \a\n";

return 0;

By calculating the delay time in system units instead of in seconds, the program in
Listing 5.14 avoids having to convert system time to seconds in each loop cycle.

Type Aliases

C++ has two ways to establish a new name as an alias for a type. One is to use the pre-
processor:

#define BYTE char // preprocessor replaces BYTE with char

The preprocessor then replaces all occurrences of BYTE with char when you compile a pro-
gram, thus making BYTE an alias for char.

The second method is to use the C++ (and C) keyword typedef to create an alias. For
example, to make byte an alias for char, you use this:

typedef char byte; // makes byte an alias for char

Here’s the general form:

typedef typeName aliasName;

In other words, if you want aliasName to be an alias for a particular type, you declare
aliasName as if it were a variable of that type and then prefix the declaration with the
typedef keyword. For example, to make byte pointer an alias for pointer-to-char, you
could declare byte pointer as a pointerto-char and then stick typedef in front:

typedef char * byte pointer; // pointer to char type

You could try something similar with #define, but that wouldn’t work if you declared a list
of variables. For example, consider the following:

#define FLOAT POINTER float *
FLOAT POINTER pa, pb;

Preprocessor substitution converts the declaration to this:
float * pa, pb; // pa a pointer to float, pb just a float

The typedef approach doesn’t have that problem. Its ability to handle more complex type
aliases makes using typedef a better choice than #define—and sometimes it is the
only choice.

Notice that typedef doesn’t create a new type. It just creates a new name for an old type.
If you make word an alias for int, cout treats a type word value as the int it really is.

The do while Loop 231

The do while Loop

You’ve now seen the for loop and the while loop.The third C++ loop is the do while.
It’s different from the other two because it’s an exit-condition loop. That means this devil-
may-care loop first executes the body of the loop and only then evaluates the test expres-
sion to see whether it should continue looping. If the condition evaluates to false, the
loop terminates; otherwise, a new cycle of execution and testing begins. Such a loop
always executes at least once because its program flow must pass through the body of the
loop before reaching the test. Here’s the syntax for the do while loop:

do
body
while (test-expression);

The body portion can be a single statement or a brace-delimited statement block.
Figure 5.4 summarizes the program flow for do while loops.

statement1

statement2
(test_expr);

statement3

statementi

statement2

do while loop

statement3

Figure 5.4 The structure of do while loops.

Usually, an entry-condition loop is a better choice than an exit-condition loop because
the entry-condition loop checks before looping. For example, suppose Listing 5.13 used

232

Chapter 5 Loops and Relational Expressions

do while instead of while. In that case, the loop would print the null character and its
code before finding that it had already reached the end of the string. But sometimes a do
while test does make sense. For example, if you’re requesting user input, the program has
to obtain the input before testing it. Listing 5.15 shows how to use do while in such a
situation.

Listing 5.15 dowhile.cpp

// dowhile.cpp -- exit-condition loop
#include <iostreams>
int main()

using namespace std;

int n;

cout << "Enter numbers in the range 1-10 to find ";
cout << "my favorite number\n";
do
{
cin >> n; // execute body
} while (n != 7); // then test
cout << "Yes, 7 is my favorite.\n" ;
return 0;

Here’s a sample run of the program in Listing 5.15:

Enter numbers in the range 1-10 to find my favorite number
9

4

7

Yes, 7 is my favorite.

Strange for loops
It’s not terribly common, but you may occasionally see code that resembles the following:

int I = 0;
for(;;) // sometimes called a "forever loop"
{
I++;
// do something ...
if (30 >= I) break; // if statement and break (Chapter 6)

}

Or here is another variation:

int T = 0;
for (;;I++)

{

The Range-Based for Loop (C++11)

if (30 >= I) break;
// do something ...

}

The code relies on the fact that an empty test condition in a for loop is treated as being
true. Neither of these examples is easy to read, and neither should be used as a general
model of writing a loop. The functionality of the first example can be more clearly expressed
ina do while loop:

int I = 0;
do {

I++;

// do something;
while (30 > I);

Similarly, the second example can be expressed more clearly as a while loop:
while (I < 30)

// do something
I++;

}

In general, writing clear, easily understood code is a more useful goal than demonstrating
the ability to exploit obscure features of the language.

The Range-Based for Loop (C++11)

The C++11 adds a new form of loop called the range-based for loop. It simplifies one
common loop task—that of doing something with each element of an array, or, more
generally, of one of the container classes, such as vector or array. Here is an example:
double prices[5] = {4.99, 10.99, 6.87, 7.99, 8.49};
for (double x : prices)

cout << x << std::endl;

Here x initially represents the first member of the prices array. After displaying the
first element, the loop then cycles x to represent the remaining elements of the array in
turn, so this code would print all five members, one per line. In short, this loop displays
every value included in the range of the array.

To modify array values, you need a different syntax for the loop variable:

for (double &x : prices)
x =x * 0.80; //20% off sale

The & symbol identifies x as a reference variable, a topic we’ll discuss in Chapter 8,
“Adventures in Functions.” The significance here is that this form of declaration allows the
subsequent code to modify the array contents, whereas the first form doesn'’t.

The range-based for loop also can be used with initialization lists:
for (int x : {3, 5, 2, 8, 6})

cout << x << " ",
cout << '\n';

233

234

Chapter 5 Loops and Relational Expressions

However, this loop likely will be used most often with the various template container
classes discussed in Chapter 16.

Loops and Text Input

Now that you’ve seen how loops work, let’s look at one of the most common and impor-
tant tasks assigned to loops: reading text character-by-character from a file or from the
keyboard. For example, you might want to write a program that counts the number of
characters, lines, and words in the input. Traditionally, C++, like C, uses the while loop for
this sort of task. We’ll next investigate how that is done. If you already know C, don’t skim
through the following sections too fast. Although the C++ while loop is the same as C’,
C++% 1/0 facilities are different. This can give the C++ loop a somewhat difterent look
from the C loop. In fact, the cin object supports three distinct modes of single-character
input, each with a different user interface. Let’s look at how to use these choices with
while loops.

Using Unadorned cin for Input

If a program is going to use a loop to read text input from the keyboard, it has to have
some way of knowing when to stop. How can it know when to stop? One way is to
choose some special character, sometimes called a sentinel character, to act as a stop sign. For
example, Listing 5.16 stops reading input when the program encounters a # character. The
program counts the number of characters it reads and then echoes them.That is, it redis-
plays the characters that have been read. (Pressing a keyboard key doesn’t automatically
place a character onscreen; programs have to do that drudge work by echoing the input
character. Typically, the operating system handles that task. In this case, both the operating
system and the test program echo the input.) When it is finished, the program reports the
total number of characters processed. Listing 5.16 shows the program.

Listing 5.16 textinl.cpp

// textinl.cpp -- reading chars with a while loop
#include <iostream>
int main()
{
using namespace std;
char ch;
int count = 0; // use basic input
cout << "Enter characters; enter # to quit:\n";
cin >> ch; // get a character
while (ch != '#'") // test the character
{
cout << ch; // echo the character
++count; // count the character
cin >> ch; // get the next character

Loops and Text Input

cout << endl << count << " characters read\n";
return 0;

Here’s a sample run of the program in Listing 5.16:

Enter characters; enter # to quit:
see ken run#ireally fast

seekenrun

9 characters read

Apparently, Ken runs so fast that he obliterates space itselt—or at least the space charac-
ters in the input.

Program Notes

Note the structure of the program in Listing 5.16. The program reads the first input char-
acter before it reaches the loop. That way, the first character can be tested when the pro-
gram reaches the loop statement. This is important because the first character might be #.
Because textinl.cpp uses an entry-condition loop, the program correctly skips the entire
loop in that case. And because the variable count was previously set to 0, count has the
correct value.

Suppose the first character read is not a #. In that case, the program enters the loop, dis-
plays the character, increments the count, and reads the next character. This last step is
vital. Without it, the loop repeatedly processes the first input character forever. With the
last step, the program advances to the next character.

Note that the loop design follows the guidelines mentioned earlier. The condition that
terminates the loop is if the last character read is #. That condition is initialized by reading
a character before the loop starts. The condition is updated by reading a new character at
the end of the loop.

This all sounds reasonable. So why does the program omit the spaces on output? Blame
cin.When reading type char values, just as when reading other basic types, cin skips over
spaces and newline characters. The spaces in the input are not echoed, so they are not
counted.

To further complicate things, the input to cin is buffered. That means the characters
you type don’t get sent to the program until you press Enter. This is why you are able to
type characters after the # when running the program in Listing 5.16. After you press
Enter, the whole sequence of characters is sent to the program, but the program quits pro-
cessing the input after it reaches the # character.

cin.get (char) to the Rescue

Usually, programs that read input character-by-character need to examine every character,
including spaces, tabs, and newlines. The istream class (defined in iostream), to which
cin belongs, includes member functions that meet this need. In particular, the member
function cin.get (ch) reads the next character, even if it is a space, from the input and

235

236

Chapter 5 Loops and Relational Expressions

assigns it to the variable ch. By replacing cin>>ch with this function call, you can fix
Listing 5.16. Listing 5.17 shows the result.

Listing 5.17 textin2.cpp

// textin2.cpp -- using cin.get(char)
#include <iostream>

int main()

{

using namespace std;
char ch;
int count = 0;

cout << "Enter characters; enter # to quit:\n";

cin.get(ch); // use the cin.get(ch) function
while (ch != '#')
{

cout << ch;

++count;

cin.get(ch); // use it again

}

cout << endl << count << " characters read\n";
return 0;

Here is a sample run of the program in Listing 5.17:

Enter characters; enter # to quit:
Did you use a #2 pencil?

Did you use a

14 characters read

Now the program echoes and counts every character, including the spaces. Input is still
buffered, so it is still possible to type more input than what eventually reaches the program.

If you are familiar with C, this program may strike you as terribly wrong. The
cin.get(ch) call places a value in the ch variable, which means it alters the value of the
variable. In C you must pass the address of a variable to a function if you want to change
the value of that variable. But the call to cin.get() in Listing 5.17 passes ch, not &ch. In
C, code like this won’t work. In C++ it can work, provided that the function declares the
argument as a reference. The reference type is something that C++ added to C.The
iostream header file declares the argument to cin.get(ch) as a reference type, so this
function can alter the value of its argument.You’ll learn the details in Chapter 8. Mean-
while, the C mavens among you can relax; ordinarily, argument passing in C++ works just
as it does in C. For cin.get (ch), however, it doesn’t.

Loops and Text Input

Which cin.get () Should You Use?
Listing 4.5 in Chapter 4 uses this code:

char name[ArSizel;

cout << "Enter your name:\n";
cin.get (name, ArSize).get();

The last line is equivalent to two consecutive function calls:

cin.get (name, ArSize);
cin.get () ;

One version of cin.get () takes two arguments: the array name, which is the address
of the string (technically, type char+), and ArSize, which is an integer of type int. (Recall
that the name of an array is the address of its first element, so the name of a character
array is type char*.) Then the program uses cin.get () with no arguments. And most
recently, we've used cin.get () this way:
char ch;
cin.get (ch);

This time cin.get () has one argument, and it is type char.

Once again it is time for those of you familiar with C to get excited or confused. In C
if a function takes a pointer-to-char and an int as arguments, you can't successfully use
the same function with a single argument of a different type. But you can do so in C++
because the language supports an OOP feature called function overloading. Function over-
loading allows you to create different functions that have the same name, provided that
they have different argument lists. If, for example, you use cin.get (name, ArSize) in
C++, the compiler finds the version of cin.get () that uses a char* and an int as argu-
ments. But if you use cin.get (ch), the compiler fetches the version that uses a single
type char argument. And if the code provides no arguments, the compiler uses the version
of cin.get () that takes no arguments.

Function overloading enables you to use the same name for related functions that per-
form the same basic task in different ways or for different types. This is another topic
awaiting you in Chapter 8. Meanwhile, you can get accustomed to function overloading
by using the get () examples that come with the istream class. To distinguish between
the different function versions, we’ll include the argument list when referring to them.
Thus, cin.get () means the version that takes no arguments, and cin.get (char) means
the version that takes one argument.

The End-of-File Condition

As Listing 5.17 shows, using a symbol such as # to signal the end of input is not always

satisfactory because such a symbol might be part of legitimate input. The same is true of
other arbitrarily chosen symbols, such as @ and %. If the input comes from a file, you can
employ a much more powerful technique—detecting the end-of-file (EOF). C++ input

237

238

Chapter 5 Loops and Relational Expressions

facilities cooperate with the operating system to detect when input reaches the end of a
file and report that information back to a program.

At first glance, reading information from files seems to have little to do with cin and
keyboard input, but there are two connections. First, many operating systems, including
Unix, Linux, and the Windows Command Prompt mode, support redirection, which enables
you to substitute a file for keyboard input. For example, suppose in Windows you have an
executable program called gofish.exe and a text file called fishtale. In that case, you
can give this command line in the command prompt mode:

gofish <fishtale

This causes the program to take input from the fishtale file instead of from the key-
board. The < symbol is the redirection operator for both Unix and the Windows Com-
mand Prompt mode.

Second, many operating systems allow you to simulate the EOF condition from the
keyboard. In Unix you do so by pressing Ctrl+D at the beginning of a line. In the Win-
dows Command Prompt mode, you press Ctrl+Z and then press Enter anywhere on the
line. Some implementations of C++ support similar behavior even though the underlying
operating system doesn’t. The EOF concept for keyboard entry is actually a legacy of
command-line environments. However, Symantec C++ for the Mac imitates Unix and
recognizes Ctrl+D as a simulated EOE Metrowerks Codewarrior recognizes Ctrl+Z in
the Macintosh and Windows environments. Microsoft Visual C++, Borland C++ 5.5, and
GNU C++ for the PC recognize Ctrl+Z when it’s the first character on a line, but they
require a subsequent Enter. In short, many PC programming environment recognize
Ctrl+Z as a simulated EOEF but the exact details (anywhere on a line versus first character
on a line, Enter key required or not required) vary.

If your programming environment can test for the EOFE you can use a program similar
to Listing 5.17 with redirected files and you can use it for keyboard input in which you
simulate the EOFE That sounds useful, so let’s see how it’s done.

When cin detects the EOE it sets two bits (the eofbit and the failbif) to 1.You can use a
member function named eof () to see whether the eofbit has been set; the call cin.eof ()
returns the bool value true if the EOF has been detected and false otherwise. Similarly,
the fail () member function returns true if either the eofbit or the failbit has been set to
1 and false otherwise. Note that the eof () and £ail () methods report the result of the
most recent attempt to read; that is, they report on the past rather than look ahead. So a
cin.eof () or cin.fail() test should always follow an attempt to read.The design of
Listing 5.18 reflects this fact. It uses £ail () instead of eof () because the former method
appears to work with a broader range of implementations.

Note

Some systems do not support simulated EOF from the keyboard. Other systems support it
imperfectly. If you have been using cin.get () to freeze the screen until you can read it,
that won’t work here because detecting the EOF turns off further attempts to read input.

Loops and Text Input

However, you can use a timing loop like that in Listing 5.14 to keep the screen visible for a
while. Or you can use cin.clear (), as mentioned in Chapters 6 and 17, to reset the
input stream.

Listing 5.18 textin3.cpp

// textin3.cpp -- reading chars to end of file
#include <iostream>
int main()
{
using namespace std;
char ch;
int count = 0;

cin.get (ch); // attempt to read a char
while (cin.fail() == false) // test for EOF
{
cout << ch; // echo character
++count;
cin.get (ch); // attempt to read another char

cout << endl << count << " characters read\n";
return 0;

Here is sample output from the program in Listing 5.18:

The green bird sings in the winter.<ENTER>
The green bird sings in the winter.

Yes, but the crow flies in the dawn.<ENTER>
Yes, but the crow flies in the dawn.
<CTRL>+<Z><ENTER>

73 characters read

Because I ran the program on a Windows 7 system, I pressed Ctrl+Z and then Enter to
simulate the EOF condition. Unix and Linux users would press Ctrl+D instead. Note that
in Unix and Unix-like systems, including Linux and Cygwin, Ctrl+Z suspends execution
of the program; the £g command lets execution resume.

By using redirection, you can use the program in Listing 5.18 to display a text file and
report how many characters it has. This time, we have a program read, echo, and count
characters from a two-line file on a Unix system (the $ is a Unix prompt):

$ textin3 < stuff

I am a Unix file. I am proud
to be a Unix file.

48 characters read

$

239

240

Chapter 5 Loops and Relational Expressions

EOF Ends Input

Remember that when a cin method detects the EOF it sets a flag in the cin object, indi-
cating the EOF condition. When this flag is set, cin does not read anymore input, and fur-
ther calls to cin have no effect. For file input, this makes sense because you shouldn’t read
past the end of a file. For keyboard input, however, you might use a simulated EOF to ter-
minate a loop but then want to read more input later. The cin.clear () method clears
the EOF flag and lets input proceed again. Chapter 17,“Input, Output, and Files,” dis-
cusses this further. Keep in mind, however, that in some systems, typing Ctrl+Z effectively
terminates both input and output beyond the powers of cin.clear () to restore them.

Common Idioms for Character Input
The following is the essential design of a loop intended to read text a character at a time
until EOF:

cin.get (ch) ; // attempt to read a char
while (cin.fail() == false) // test for EOF
{
- // do stuff
cin.get (ch); // attempt to read another char

There are some shortcuts you can take with this code. Chapter 6 introduces the !
operator, which toggles true to false and vice versa.You can use it to rewrite the while
test to look like this:

while (!cin.fail()) // while input has not failed

The return value for the cin.get (char) method is cin, an object. However, the
istream class provides a function that can convert an istream object such as cin to a
bool value; this conversion function is called when cin occurs in a location where a bool
is expected, such as in the test condition of a while loop. Furthermore, the bool value for
the conversion is true if the last attempted read was successful and false otherwise. This
means you can rewrite the while test to look like this:

while (cin) // while input is successful

This is a bit more general than using !cin.fail() or !cin.eof () because it detects
other possible causes of failure, such as disk failure.

Finally, because the return value of cin.get (char) is cin, you can condense the loop
to this format:

while (cin.get(ch)) // while input is successful

{

// do stuff

Here, cin.get (char) is called once in the test condition instead of twice—once
before the loop and once at the end of the loop. To evaluate the loop test, the program

Loops and Text Input

first has to execute the call to cin.get (ch), which, if successful, places a value into ch.
Then the program obtains the return value from the function call, which is cin.Then it
applies the bool conversion to cin, which yields true if input worked and false other-
wise. The three guidelines (identifying the termination condition, initializing the condi-
tion, and updating the condition) are all compressed into one loop test condition.

Yet Another Version of cin.get ()

Nostalgic C users might yearn for C’s character I/O functions, getchar () and
putchar (). They are available in C++ if you want them.You just use the stdio.h header
file as you would in C (or use the more current cstdio). Or you can use member func-
tions from the istream and ostream classes that work in much the same way. Let’s look at
that approach next.

The cin.get () member function with no arguments returns the next character from
the input. That is, you use it in this way:

ch = cin.get();

(Recall that cin.get (ch) returns an object, not the character read.) This function
works much the same as C’s getchar (), returning the character code as a type int value.
Similarly, you can use the cout.put () function (see Chapter 3, “Dealing with Data”) to
display the character:

cout.put (ch) ;

It works much like C’s putchar (), except that its argument should be type char
instead of type int.

Note

Originally, the put () member had the single prototype put (char). You could pass to it an
int argument, which would then be type cast to char. The Standard also calls for a single
prototype. However, some C++ implementations provide three prototypes: put (char),
put (signed char), and put (unsigned char). Using put () with an int argument in
these implementations generates an error message because there is more than one
choice for converting the int. An explicit type cast, such as cin.put (char (ch)), works
for int types.

To use cin.get () successfully, you need to know how it handles the EOF condition.
When the function reaches the EOF there are no more characters to be returned. Instead,
cin.get () returns a special value, represented by the symbolic constant EOF. This constant
is defined in the iostream header file. The EOF value must be different from any valid
character value so that the program won’t confuse EOF with a regular character. Typically,
EOF is defined as the value -1 because no character has an ASCII code of -1, but you
don’t need to know the actual value.You can just use EOF in a program. For example, the
heart of Listing 5.18 looks like this:

241

242

Chapter 5 Loops and Relational Expressions

char ch;
cin.get (ch);
while (cin.fail() == false) // test for EOF

cout << ch;
++count;

cin.get (ch);

You can use int ch, replace cin.get (char) with cin.get (), replace cout with
cout .put (), and replace the cin.fail() test with a test for EOF:

int ch; /// for compatibility with EOF value
ch = cin.get();
while (ch != EOF)

{
cout.put (ch) ; // cout.put (char(ch)) for some implementations
++count;

ch = cin.get();

If ch is a character, the loop displays it. If ch is EOF, the loop terminates.

Tip
You should realize that EOF does not represent a character in the input. Instead, it's a signal
that there are no more characters.

There’s a subtle but important point about using cin.get () beyond the changes made
so far. Because EOF represents a value outside the valid character codes, it’s possible that it
might not be compatible with the char type. For example, on some systems type char is
unsigned, so a char variable could never have the usual EOF value of -1. For this reason, if
you use cin.get () (with no argument) and test for EOF, you must assign the return value
to type int instead of to type char.Also if you make ch type int instead of type char,
you might have to do a type cast to char when displaying ch.

Listing 5.19 incorporates the cin.get () approach into a new version of Listing 5.18. It
also condenses the code by combining character input with the while loop test.

Listing 5.19 textin4.cpp

// textind.cpp -- reading chars with cin.get ()

#include <iostream>

int main(void)

{
using namespace std;
int ch; // should be int, not char
int count = 0;

while ((ch = cin.get()) != EOF) // test for end-of-file

Loops and Text Input

cout.put (char (ch)) ;

++count;
cout << endl << count << " characters read\n";
return 0;

Note

Some systems either do not support simulated EOF from the keyboard or support it imper-
fectly, and that may prevent the example in Listing 5.19 from running as described. If you
have been using cin.get () to freeze the screen until you can read it, that won’t work here
because detecting the EOF turns off further attempts to read input. However, you can use a
timing loop like that in Listing 5.14 to keep the screen visible for a while. Or you can use
cin.clear (), as described in Chapter 17, to reset the input stream.

Here’s a sample run of the program in Listing 5.19:

The sullen mackerel sulks in the shadowy shallows.<ENTER>
The sullen mackerel sulks in the shadowy shallows.

Yes, but the blue bird of happiness harbors secrets.<ENTER>
Yes, but the blue bird of happiness harbors secrets.
<CTRL>+<Z><ENTER>

104 characters read

Let’s analyze the loop condition:

while ((ch = cin.get()) != EOF)

The parentheses that enclose the subexpression ch = cin.get () cause the program to
evaluate that expression first. To do the evaluation, the program first has to call the
cin.get () function. Next, it assigns the function return value to ch. Because the value of
an assignment statement is the value of the left operand, the whole subexpression reduces
to the value of ch. If this value is EOF, the loop terminates; otherwise, it continues. The
test condition needs all the parentheses. Suppose you leave some parentheses out:

while (ch = cin.get() != EOF)

The ! = operator has higher precedence than =, so first the program compares
cin.get () s return value to EOF. A comparison produces a false or true result; that
bool value is converted to 0 or 1, and that’s the value that gets assigned to ch.

Using cin.get (ch) (with an argument) for input, on the other hand, doesn’t create
any type problems. Remember that the cin.get (char) function doesn’t assign a special
value to ch at the EOF In fact, it doesn’t assign anything to ch in that case. ch is never
called on to hold a non-char value.Table 5.3 summarizes the differences between
cin.get (char) and cin.get ().

243

244

Chapter 5 Loops and Relational Expressions

Table 5.3 cin.get(ch) Versus cin.get ()

Property cin.get (ch) ch=cin.get ()

Method for conveying Assign to argument ch Use function return value
input character to assign to ch

Function return value for A class istream object (true after Code for character as type
character input bool conversion) int value

Function return value A class istream object (false after EOF

at EOF bool conversion)

So which should you use, cin.get () or cin.get (char)? The form with the character
argument is integrated more fully into the object approach because its return value is an
istream object. This means, for example, that you can chain uses. For example, the fol-
lowing code means read the next input character into chl and the following input char-
acter into ch2:

cin.get (chl) .get (ch2);

This works because the function call cin.get (ch1) returns the cin object, which
then acts as the object to which get (ch2) is attached.

Probably the main use for the get () form is to let you make quick-and-dirty conver-
sions from the getchar () and putchar () functions of stdio.h to the cin.get () and
cout.put () methods of iostream.You just replace one header file with the other and
globally replace getchar () and putchar () with their act-alike method equivalents. (If
the old code uses a type int variable for input, you have to make further adjustments if
your implementation has multiple prototypes for put () .)

Nested Loops and Two-Dimensional Arrays

Earlier in this chapter you saw that the for loop is a natural tool for processing arrays.
Now let’s go a step further and look at how a for loop within a for loop (nested loops)
serves to handle two-dimensional arrays.

First, let’s examine what a two-dimensional array is. The arrays used so far in this chap-
ter are termed one-dimensional arrays because you can visualize each array as a single row
of data.You can visualize a two-dimensional array as being more like a table, having both
rows and columns of data.You can use a two-dimensional array, for example, to represent
quarterly sales figures for six separate districts, with one row of data for each district. Or
you can use a two-dimensional array to represent the position of RoboDork on a com-
puterized game board.

C++ doesn’t provide a special two-dimensional array type. Instead, you create an array
for which each element is itself an array. For example, suppose you want to store maxi-
mum temperature data for five cities over a 4-year period. In that case, you can declare an
array as follows:

int maxtemps [4] [5];

Nested Loops and Two-Dimensional Arrays

This declaration means that maxtemps is an array with four elements. Each of these
elements is an array of five integers (see Figure 5.5).You can think of the maxtemps array
as representing four rows of five temperature values each.

maxtemps is an array of 4 elements

int maxtemps[4][5];

Each element is an array of 5 ints.

The maxtemps array

A

maxtemps[@] maxtemps[1] maxtemps[2] maxtemps[S]W

A A A A

r AR Al AN Al

]

maxtemps[@][0] maxtemps[1][0] maxtemps[2][@] maxtemps[3]1[0]

Figure 5.5 An array of arrays.

The expression maxtemps [0] is the first element of the maxtemps array; hence
maxtemps [0] is itself an array of five ints.The first element of the maxtemps [0] array is
maxtemps [0] [0], and this element is a single int.Thus, you need to use two subscripts to
access the int elements.You can think of the first subscript as representing the row and
the second subscript as representing the column (see Figure 5.6).

int maxtemps[4][5];

The maxtemps array viewed as a table:

0 1 2 3 4
maxtemps[0] O | maxtemps[0][0] | maxtemps[0][1] |maxtemps[@][2] |maxtemps[@][3] |maxtemps[0][4]
maxtemps[1] 1 | maxtemps[1][0] | maxtemps[1][1] |maxtemps[1][2] |maxtemps[1][3] |maxtemps[1][4]
maxtemps[2] 2 | maxtemps[2][0] | maxtemps[2][1] |maxtemps[2][2] |maxtemps[2][3] |maxtemps[2][4]
maxtemps[3] 3 | maxtemps[3][@] | maxtemps[3][1] |maxtemps[3][2] |maxtemps[3][3] |maxtemps[3][4]

Figure 5.6 Accessing array elements with subscripts.

245

246

Chapter 5 Loops and Relational Expressions

Suppose you want to print all the array contents. In that case, you can use one for
loop to change rows and a second, nested, for loop to change columns:

for (int row = 0; row < 4; row++)

{
for (int col = 0; col < 5; ++col)
cout << maxtemps [row] [col]l << "\t";
cout << endl;

For each value of row, the inner for loop cycles through all the col values. This exam-
ple prints a tab character (\t in C++ escape character notation) after each value and a
newline character after each complete row.

Initializing a Two-Dimensional Array

‘When you create a two-dimensional array, you have the option of initializing each ele-
ment. The technique is based on that for initializing a one-dimensional array. Remember
that you do this by providing a comma-separated list of values enclosed in braces:

// initializing a one-dimensional array
int btus([5] = { 23, 26, 24, 31, 28};

For a two-dimensional array, each element is itself an array, so you can initialize each
element by using a form like that in the previous code example. Thus, the initialization
consists of a comma-separated series of one-dimensional initializations, all enclosed in a
set of braces:

int maxtemps[4] [5] = // 2-D array

{
{96, 100, 87, 101, 105}, // values for maxtemps[0]
{96, 98, 91, 107, 104}, // values for maxtemps[1]
{97, 101, 93, 108, 107}, // values for maxtemps [2]
{98, 103, 95, 109, 108} // values for maxtemps [3]

}i

You can visualize maxtemps as four rows of five numbers each. The term {94, 98,
87, 103, 101} initializes the first row, represented by maxtemps [0].As a matter of style,
placing each row of data on its own line, if possible, makes the data easier to read.

Using a Two-Dimensional Array

Listing 5.20 incorporates an initialized two-dimensional array and a nested loop into a
program. This time the program reverses the order of the loops, placing the column loop
(city index) on the outside and the row loop (year index) on the inside. Also it uses a

Nested Loops and Two-Dimensional Arrays

common C++ practice of initializing an array of pointers to a set of string constants. That
is, cities is declared as an array of pointers-to-char. That makes each element, such as
cities[0],a pointer-to-char that can be initialized to the address of a string. The pro-
gram initializes cities [0] to the address of the "Gribble city" string, and so on.Thus,
this array of pointers behaves like an array of strings.

Listing 5.20 nested.cpp

// nested.cpp -- nested loops and 2-D array
#include <iostreams>

const int Cities = 5;

const int Years = 4;

int main()

{

using namespace std;

const char * cities[Cities] = // array of pointers
{ // to 5 strings
"Gribble City",
"Gribbletown",

"New Gribble",
"San Gribble",
"Gribble Vista"

}i

int maxtemps[Years] [Cities] = // 2-D array

{
{96, 100, 87, 101, 105}, // values for maxtemps [0
{96, 98, 91, 107, 104}, // values for maxtemps[1
{97, 101, 93, 108, 107}, // values for maxtemps [2]
{98, 103, 95, 109, 108} // values for maxtemps [3]

}i

cout << "Maximum temperatures for 2008 - 2011\n\n";
for (int city = 0; city < Cities; ++city)
{
cout << cities([city] << ":\t";
for (int year = 0; year < Years; ++year)
cout << maxtemps [year] [city] << "\t";
cout << endl;

// cin.get();
return 0;

247

248

Chapter 5 Loops and Relational Expressions

Here is the output for the program in Listing 5.20:

Maximum temperatures for 2008 - 2011

Gribble City: 96 96 97 98
Gribbletown: 100 98 101 103
New Gribble: 87 91 93 95
San Gribble: 101 107 108 109
Gribble Vista: 105 104 107 108

Using tabs in the output spaces the data more regularly than using spaces would.
However, different tab settings can cause the output to vary in appearance from one sys-
tem to another. Chapter 17 presents more precise, but more complex, methods for for-
matting output.

More awkwardly, you could use an array of arrays of char instead of an array of point-
ers for the string data. The declaration would look like this:

char cities[Cities] [25] = // array of 5 arrays of 25 char

{
"Gribble City",
"Gribbletown",
"New Gribble",
"San Gribble",
"Gribble Vista"

}i

This approach limits each of the five strings to a maximum of 24 characters. The array
of pointers stores the addresses of the five string literals, but the array of char arrays
copies each of the five string literals to the corresponding five arrays of 25 char.Thus, the
array of pointers is much more economical in terms of space. However, if you intended to
modify any of the strings, the two-dimensional array would be a better choice. Oddly
enough, both choices use the same initialization list and the same for loop code to dis-
play the strings.

Also you could use an array of string class objects instead of an array of pointers for
the string data. The declaration would look like this:

const string cities[Cities] = // array of 5 strings
{

"Gribble City",

"Gribbletown",

"New Gribble",

"San Gribble",

"Gribble Vista"

Summary

If you intended for the strings to be modifiable, you would omit the const qualifier.
This form uses the same initializer list and the same for loop display code as the other
two forms. If you want modifiable strings, the automatic sizing feature of the string class
makes this approach more convenient to use than the two-dimensional array approach.

Summary

C++ ofters three varieties of loops: for loops, while loops, and do while loops. A
loop cycles through the same set of instructions repetitively, as long as the loop test con-
dition evaluates to true or nonzero and the loop terminates execution when the test
condition evaluates to false or zero.The for loop and the while loop are entry-condi-
tion loops, meaning that they examine the test condition before executing the statements
in the body of the loop.The do while loop is an exit-condition loop, meaning that it
examines the test condition after executing the statements in the body of the loop.

The syntax for each loop calls for the loop body to consist of a single statement. How-
ever, that statement can be a compound statement, or block, formed by enclosing several
statements within paired curly braces.

Relational expressions, which compare two values, are often used as loop test condi-
tions. Relational expressions are formed by using one of the six relational operators: <, <=,
==, >=,>,0r !=. Relational expressions evaluate to the type bool values true and false.

Many programs read text input or text files character-by-character. The istream class
provides several ways to do this. If ch is a type char variable, the following statement
reads the next input character into ch:

cin >> ch;

However, it skips over spaces, newlines, and tabs. The following member function call
reads the next input character, regardless of its value, and places it in ch:

cin.get (ch);

The member function call cin.get () returns the next input character, including
spaces, newlines, and tabs, so it can be used as follows:

ch = cin.get();

The cin.get (char) member function call reports encountering the EOF condition
by returning a value with the bool conversion of false, whereas the cin.get () member
function call reports the EOF by returning the value EoF, which is defined in the
iostrean file.

A nested loop is a loop within a loop. Nested loops provide a natural way to process
two-dimensional arrays.

249

250

Chapter 5 Loops and Relational Expressions

Chapter Review

1.

‘What’s the difference between an entry-condition loop and an exit-condition loop?

Which kind is each of the C++ loops?

‘What would the following code fragment print if it were part of a valid program?
int 1i;
for (1 = 0; 1 < 5; i++)

cout << 1i;

cout << endl;

‘What would the following code fragment print if it were part of a valid program?
int j;
for (j = 0; j < 11; J += 3)
cout << j;
cout << endl << j << endl;

‘What would the following code fragment print if it were part of a valid program?
int j = 5;
while (++j < 9)

cout << j++ << endl;

What would the following code fragment print if it were part of a valid program?
int k = 8;
do
cout <<" k = " << k << endl;
while (k++ < 5);

. Write a for loop that prints the values 1 2 4 8 16 32 64 by increasing the value of

a counting variable by a factor of two in each cycle.
How do you make a loop body include more than one statement?

Is the following statement valid? If not, why not? If so, what does it do?
int x = (1,024);

What about the following?

int y;

y = 1,024;

How does cins>ch differ from cin.get (ch) and ch=cin.get () in how it views
input?

Programming Exercises

Programming Exercises

1.

Write a program that requests the user to enter two integers. The program should
then calculate and report the sum of all the integers between and including the two
integers. At this point, assume that the smaller integer is entered first. For example, if
the user enters 2 and 9, the program should report that the sum of all the integers

from 2 through 9 is 44.

Redo Listing 5.4 using a type array object instead of a built-in array and type
long double instead of long long. Find the value of 100!

Write a program that asks the user to type in numbers. After each entry, the pro-
gram should report the cumulative sum of the entries to date. The program should
terminate when the user enters 0.

Daphne invests $100 at 10% simple interest. That is, every year, the investment earns
10% of the original investment, or $10 each and every year:

interest = 0.10 X original balance

At the same time, Cleo invests $100 at 5% compound interest. That is, interest is 5%
of the current balance, including previous additions of interest:

interest = 0.05 X current balance

Cleo earns 5% of $100 the first year, giving her $105. The next year she earns 5% of
$105, or $5.25, and so on. Write a program that finds how many years it takes for
the value of Cleo’s investment to exceed the value of Daphne’s investment and then
displays the value of both investments at that time.

You sell the book C++ for Fools. Write a program that has you enter a year’s worth
of monthly sales (in terms of number of books, not of money). The program should
use a loop to prompt you by month, using an array of char * (or an array of
string objects, if you prefer) initialized to the month strings and storing the input
data in an array of int.Then, the program should find the sum of the array con-
tents and report the total sales for the year.

Do Programming Exercise 5 but use a two-dimensional array to store input for 3
years of monthly sales. Report the total sales for each individual year and for the
combined years.

Design a structure called car that holds the following information about an auto-
mobile: its make, as a string in a character array or in a string object, and the year
it was built, as an integer. Write a program that asks the user how many cars to cata-
log. The program should then use new to create a dynamic array of that many car
structures. Next, it should prompt the user to input the make (which might consist
of more than one word) and year information for each structure. Note that this
requires some care because it alternates reading strings with numeric data (see

251

252 Chapter 5 Loops and Relational Expressions

10.

Chapter 4). Finally, it should display the contents of each structure. A sample run
should look something like the following:
How many cars do you wish to catalog? 2
Car #1:

Please enter the make: Hudson Hornet
Please enter the year made: 1952

Car #2:

Please enter the make: Kaiser

Please enter the year made: 1951

Here is your collection:

1952 Hudson Hornet

1951 Kaiser

‘Write a program that uses an array of char and a loop to read one word at a time
until the word done is entered. The program should then report the number of
words entered (not counting done). A sample run could look like this:

Enter words (to stop, type the word done):

anteater birthday category dumpster

envy finagle geometry done for sure

You entered a total of 7 words.

You should include the cstring header file and use the strcmp () function to
make the comparison test.

‘Write a program that matches the description of the program in Programming
Exercise 8, but use a string class object instead of an array. Include the string
header file and use a relational operator to make the comparison test.

Write a program using nested loops that asks the user to enter a value for the
number of rows to display. It should then display that many rows of asterisks, with
one asterisk in the first row, two in the second row, and so on. For each row, the
asterisks are preceded by the number of periods needed to make all the rows
display a total number of characters equal to the number of rows. A sample run

would look like this:

Enter number of rows: 5

0

Branching Statements and
Logical Operators

In this chapter you’ll learn about the following:

= The if statement

= The if else statement

= Logical operators: &, | |,and !

= The cctype library of character functions
= The conditional operator: ?:

= The switch statement

= The continue and break statements

= Number-reading loops

= Basic file input/output

One of the keys to designing intelligent programs is to give them the ability to make
decisions. Chapter 5,“Loops and Relational Expressions,” shows one kind of decision
making—looping—in which a program decides whether to continue looping. This chap-
ter investigates how C++ lets you use branching statements to decide among alternative
actions. Which vampire-protection scheme (garlic or cross) should the program use? What
menu choice has the user selected? Did the user enter a zero? C++ provides the if and
switch statements to implement decisions, and they are this chapter’s main topics. This
chapter also looks at the conditional operator, which provides another way to make a
choice, and the logical operators, which let you combine two tests into one. Finally, the
chapter takes a first look at file input/output.

254

Chapter 6 Branching Statements and Logical Operators

The if Statement

When a C++ program must choose whether to take a particular action, you usually
implement the choice with an if statement.The if comes in two forms: if and if
else. Let’s investigate the simple if first. It’s modeled after ordinary English, as in “If you
have a Captain Cookie card, you get a free cookie.” The if statement directs a program
to execute a statement or statement block if a test condition is true and to skip that state-
ment or block if the condition is false. Thus, an if statement lets a program decide
whether a particular statement should be executed.

The syntax for the if statement is similar to the that of the while syntax:
if (test-condition)

statement

A true test-condition causes the program to execute statement, which can be a
single statement or a block. A false test-condition causes the program to skip
statement (see Figure 6.1). As with loop test conditions, an if test condition is type cast
to a bool value, so zero becomes false and nonzero becomes true.The entire if con-
struction counts as a single statement.

statement1
(test_expr)
statement?2
statement3

statementi

if statement

1
1
;
1
statement2 !
1
1
1
1
1

statement3

Figure 6.1 The structure of if statements.

Most often, test-condition is a relational expression such as those used to control
loops. Suppose, for example, that you want a program that counts the spaces in the input
as well as the total number of characters.You can use cin.get (char) in a while loop to

The if Statement

read the characters and then use an if statement to identify and count the space charac-
ters. Listing 6.1 does just that, using the period (.) to recognize the end of a sentence.

Listing 6.1 if.cpp

// if.cpp -- using the if statement
#include <iostreams>
int main()
{
using std::cin; // using declarations
using std::cout;
char ch;
int spaces = 0;
int total = 0;
cin.get (ch);
1=

while (ch) // quit at end of sentence
{
if (ch == ' ') // check if ch is a space
++spaces;
++total; // done every time

cin.get (ch);
cout << spaces << " spaces, " << total;
cout << " characters total in sentence\n";
return 0;

Here’s some sample output from the program in Listing 6.1:
The balloonist was an airhead

with lofty goals.
6 spaces, 46 characters total in sentence

As the comments in Listing 6.1 indicate, the ++spaces; statement is executed only
when ch is a space. Because it is outside the if statement, the ++total; statement is
executed in every loop cycle. Note that the total count includes the newline character
that is generated by pressing Enter.

The if else Statement

Whereas an if statement lets a program decide whether a particular statement or block is
executed, an if else statement lets a program decide which of fwo statements or blocks
is executed. It’s an invaluable statement for creating alternative courses of action. The
C++ if else statement is modeled after simple English, as in “If you have a Captain
Cookie card, you get a Cookie Plus Plus, else you just get a Cookie d’Ordinaire.” The if
else statement has this general form:

255

256

Chapter 6 Branching Statements and Logical Operators

if (test-condition)
statementl
else
statement2

If test-condition is true, or nonzero, the program executes statement1 and skips
over statement2. Otherwise, when test-condition is false, or zero, the program skips
statement1 and executes statement2 instead. So the following code fragment prints the
first message if answer is 1492 and prints the second message otherwise:
if (answer == 1492)

cout << "That's right!\n";
else
cout << "You'd better review Chapter 1 again.\n";

Each statement can be either a single statement or a statement block delimited by
braces (see Figure 6.2).The entire if else construct counts syntactically as a single
statement.

statement1
(test_expr)

statement2

statement3

statement1

statement4

if else statement

1

1

1

1

false true !
statement3 statement2 !
1

1

1

1

1

statement4

Figure 6.2 The structure of if else statements.

For example, suppose you want to alter incoming text by scrambling the letters while
keeping the newline character intact. In that case, each line of input is converted to an
output line of equal length. This means you want the program to take one course of
action for newline characters and a different course of action for all other characters. As
Listing 6.2 shows, if else makes this task easy. The listing also illustrates the std: : quali-
fier, one of the alternatives to a using directive.

The if Statement

Listing 6.2 ifelse.cpp

// ifelse.cpp -- using the if else statement
#include <iostreams>
int main()

{

char ch;

std::cout << "Type, and I shall repeat.\n";
std::cin.get (ch) ;

while (ch != '.")
{
if (ch == "\n")
std::cout << ch; // done if newline
else
std::cout << ++ch; // done otherwise

std::cin.get (ch) ;
}
// try ch + 1 instead of ++ch for interesting effect
std::cout << "\nPlease excuse the slight confusion.\n";
// std::cin.get();
// std::cin.get();
return 0;

Here’s some sample output from the program in Listing 6.2:
Type, and I shall repeat.
An ineffable joy suffused me as I beheld
Bo!jofggbcmf lkpz!tvggvtfe!nfibt!J!cfifme
the wonders of modern computing.
uif Ixpoefst!pg!npefso!dpngvujoh
Please excuse the slight confusion.

Note that one of the comments in Listing 6.2 suggests that changing ++ch to ch+1 has
an interesting effect. Can you deduce what it will be? If not, try it out and then see if you
can explain what’s happening. (Hint: Think about how cout handles different types.)

Formatting if else Statements

Keep in mind that the two alternatives in an if else statement must be single state-
ments. If you need more than one statement, you must use braces to collect them into a
single block statement. Unlike some languages, such as BASIC and FORTRAN, C++
does not automatically consider everything between if and else a block, so you have to
use braces to make the statements a block. The following code, for example, produces a
compiler error:

257

258

Chapter 6 Branching Statements and Logical Operators

if (ch == 'Z")

ZOYTO++; // if ends here

cout << "Another Zorro candidate\n";
else // wrong

dull++;

cout << "Not a Zorro candidate\n";

The compiler sees it as a simple if statement that ends with the zorro++; statement.
Then there is a cout statement. So far, so good. But then there is what the compiler
perceives as an unattached else, and that is flagged as a syntax error.
You add braces to group statements into a single statement block:
if (ch == '2')
{ // if true block
ZOXro++;

cout << "Another Zorro candidate\n";

}

else

{ // if false block
dull++;
cout << "Not a Zorro candidate\n";

Because C++ is a free-form language, you can arrange the braces as you like, as long as
they enclose the statements. The preceding code shows one popular format. Here’s

another:
if (ch == '2') {
ZOYTO++;

cout << "Another Zorro candidate\n";

}

else {
dull++;
cout << "Not a Zorro candidate\n";

}

The first form emphasizes the block structure for the statements, whereas the second
form more closely ties the blocks to the keywords if and else. Either style is clear and
consistent and should serve you well; however, you may encounter an instructor or
employer with strong and specific views on the matter.

The if else if else Construction

Computer programs, like life, might present you with a choice of more than two selec-
tions.You can extend the C++ if else statement to meet such a need. As you've seen,
the else should be followed by a single statement, which can be a block. Because an if
else statement itself is a single statement, it can follow an else:

The if Statement

if (ch == 'A")
a_grade++; // alternative # 1
else
if (ch == 'B'") // alternative # 2
b _grade++; // subalternative # 2a
else
SOS0++; // subalternative # 2b

If ch is not 'a', the program goes to the else.There, a second if else subdivides
that alternative into two more choices. C++% free formatting enables you to arrange
these elements into an easier-to-read format:

if (ch == 'A")

a_grade++; // alternative # 1
else if (ch == 'B')

b grade++; // alternative # 2
else

SOS0++; // alternative # 3

This looks like a new control structure—an if else if else structure. But actually
itis one if else contained within a second. This revised format looks much cleaner, and
it enables you to skim through the code to pick out the different alternatives. This entire
construction still counts as one statement.

Listing 6.3 uses this preferred formatting to construct a modest quiz program.

Listing 6.3 ifelseif.cpp

// ifelseif.cpp -- using if else if else
#include <iostream>
const int Fave = 27;
int main()
{
using namespace std;
int n;

cout << "Enter a number in the range 1-100 to find ";
cout << "my favorite number: ";
do

cin >> n;

if (n < Fave)

cout << "Too low -- guess again: ";
else if (n > Fave)

cout << "Too high -- guess again: ";
else

cout << Fave << " is right!\n";
} while (n != Fave);
return 0;

259

260 Chapter 6 Branching Statements and Logical Operators

Here’s some sample output from the program in Listing 6.3:
Enter a number in the range 1-100 to find my favorite number: 50
Too high -- guess again: 25
Too low -- guess again: 37
Too high -- guess again: 31
Too high -- guess again: 28
Too high -- guess again: 27
27 is right!

Conditional Operators and Bug Prevention

Many programmers reverse the more intuitive expression variable == value 10 value ==
variable in order to catch errors where the equality is mistyped as an assignment opera-
tor. For example, entering the conditional as follows is valid and will work properly:

if (3 == myNumber)

However, if you happen to mistype as follows, the compiler will generate an error message
because it believes you are attempting to assign a value to a literal (3 always equals 3 and
can’t be assigned another value):

if (3 = myNumber)
Suppose you made a similar mistake, using the former notation:
if (myNumber = 3)

The compiler would simply assign the value 3 to myNumber, and the block within the if
would run—a very common error, and a difficult error to find. (However, many compilers will
issue a warning, which you would be wise to heed.) As a general rule, writing code that
allows the compiler to find errors is much easier than repairing the causes of mysterious
faulty results.

Logical Expressions

Often you must test for more than one condition. For example, for a character to be a
lowercase letter, its value must be greater than or equal to 'a' and less than or equal to
1z'. Or, if you ask a user to respond with a y or an n, you want to accept uppercase (¥ and
N) as well as lowercase. To meet this kind of need, C++ provides three logical operators to
combine or modify existing expressions. The operators are logical OR, written | |;logical
AND, written &&; and logical NOT, written !. Let’s examine them now.

The Logical OR Operator: | |

In English, the word or can indicate when one or both of two conditions satisfy a require-
ment. For example, you can go to the MegaMicro company picnic if you or your spouse
work for MegaMicro, Inc. The C++ equivalent is the logical OR operator, written | |.
This operator combines two expressions into one. If either or both of the original

Logical Expressions

expressions is true, or nonzero, the resulting expression has the value true. Otherwise, the
expression has the value false. Here are some examples:

5==5 || 5==9 // true because first expression is true

5 >3 || 5> 10 // true because first expression is true
5> 8 \\ 5 < 10 // true because second expression is true
5<8 \\ 5>2 // true because both expressions are true
5>8 || 5<2 // false because both expressions are false

Because the || has a lower precedence than the relational operators, you don’t need to
use parentheses in these expressions. Table 6.1 summarizes how the || operator works.

Table 6.1 The | | Operator

The Value of exprl || expr2

exprl == true exprl == false
expr2 == true true true
expr2 == false true false

C++ provides that the | | operator is a sequence point. That is, any value changes indi-
cated on the left side take place before the right side is evaluated. (Or in the newer parl-
ance of C++11, the subexpression to the left of the operator is sequenced before the
subexpression to the right.) For example, consider the following expression:

i+t <6 || 1 ==7

Suppose i originally has the value 10. By the time the comparison with j takes place, i
has the value 11. Also C++ won'’t bother evaluating the expression on the right if the
expression on the left is true, for it only takes one true expression to make the whole logi-
cal expression true. (The semicolon and the comma operator, recall, are also sequence
points.)

Listing 6.4 uses the | | operator in an if statement to check for both uppercase and
lowercase versions of a character. Also it uses C++’s string concatenation feature (see
Chapter 4,“Compound Types”) to spread a single string over three lines.

Listing 6.4 or.cpp

// or.cpp -- using the logical OR operator
#include <iostream>
int main()
{
using namespace std;
cout << "This program may reformat your hard disk\n"
"and destroy all your data.\n"
"Do you wish to continue? <y/n> ";
char ch;

261

262

Chapter 6 Branching Statements and Logical Operators

cin >> ch;

if (ch == 'y' || ch == 'Y") // vy or Y
cout << "You were warned!\a\a\n";

else if (ch == 'n' || ch == 'N') // n or N
cout << "A wise choice ... bye\n";

else

cout << "That wasn't a y or n! Apparently you "
"can't follow\ninstructions, so "
"I'11 trash your disk anyway.\a\a\a\n";
return 0;

(The program doesn'’t really carry out any threats.) Here is a sample run of the program
in Listing 6.4:
This program may reformat your hard disk
and destroy all your data.
Do you wish to continue? <y/n> N
A wise choice ... bye

The program reads just one character, so only the first character in the response mat-
ters. That means the user could have input No! instead of N. The program would just read
the N. But if the program tried to read more input later, it would start at the o.

The Logical AND Operator: &&

The logical AND operator, written &&, also combines two expressions into one. The
resulting expression has the value true only if both of the original expressions are true.
Here are some examples:

5 ==5 && 4 == 4 // true because both expressions are true
5 == 3 && 4 == 4 // false because first expression is false
5>3 & 5 > 10 // false because second expression is false
5>8 && 5 < 10 // false because first expression is false
5 <8 && 5 > 2 // true because both expressions are true
5>8 && 5 < 2 // false because both expressions are false

Because the && has a lower precedence than the relational operators, you don’t need to
use parentheses in these expressions. Like the || operator, the && operator acts as a
sequence point, so the left side is evaluated, and any side effects are carried out before the
right side is evaluated. If the left side is false, the whole logical expression must be false, so
C++ doesn’t bother evaluating the right side in that case. Table 6.2 summarizes how the
&& operator works.

Logical Expressions

Table 6.2 The && Operator

The Value of exprl && expr2

exprl == true exprl == false
expr2 == true true false
expr2 == false false false

Listing 6.5 shows how to use && to cope with a common situation, terminating a
while loop, for two different reasons. In the listing, a while loop reads values into an array.
One test (i < ArSize) terminates the loop when the array is full. The second test (temp
>= 0) gives the user the option of quitting early by entering a negative number. The pro-
gram uses the && operator to combine the two tests into a single condition. The program
also uses two if statements,an if else statement, and a for loop, so it demonstrates sev-
eral topics from this chapter and Chapter 5.

Listing 6.5 and.cpp

// and.cpp -- using the logical AND operator
#include <iostream>
const int ArSize = 6;
int main()
{
using namespace std;
float naaqg[ArSizel;

cout << "Enter the NAAQs (New Age Awareness Quotients)
<< "of\nyour neighbors. Program terminates "
<< "when you make\n" << ArSize << " entries "
<< "or enter a negative value.\n";

int 1 = 0;

float temp;

cout << "First value: ";

cin >> temp;

while (i < ArSize && temp >= 0) // 2 quitting criteria

{

naaqli] = temp;
++1;
if (i < ArSize) // room left in the array,

{

cout << "Next value: ";

cin >> temp; // so get next value

}
if (1 == 0)
cout << "No data--bye\n";

263

264 Chapter 6 Branching Statements and Logical Operators

else

cout << "Enter your NAAQ: ";
float you;
cin >> you;
int count = 0;
for (int j = 0; J < i; J++)
if (naag[j] > you)
++count;
cout << count;
cout << " of your neighbors have greater awareness of\n"
<< "the New Age than you do.\n";

}

return 0;

Note that the program in Listing 6.5 places input into the temporary variable temp.
Only after it verifies that the input is valid does the program assign the value to the array.
Here are a couple of sample runs of the program. One terminates after six entries:

Enter the NAAQs (New Age Awareness Quotients) of
your neighbors. Program terminates when you make
6 entries or enter a negative value.

First value: 28

Next value: 72

Next value: 15

Next value: 6

Next value: 130

Next value: 145

Enter your NAAQ: 50

3 of your neighbors have greater awareness of
the New Age than you do.

The second run terminates after a negative value is entered:

Enter the NAAQs (New Age Awareness Quotients) of
your neighbors. Program terminates when you make
6 entries or enter a negative value.

First value: 123

Next value: 119

Next value: 4

Next value: 89

Next value: -1

Enter your NAAQ: 123.031

0 of your neighbors have greater awareness of
the New Age than you do.

Logical Expressions

Program Notes
The following is the input part of the program in Listing 6.5:
cin >> temp;

while (i < ArSize && temp >= 0) // 2 quitting criteria

{

naag[i] = temp;
++1;
if (i < ArSize) // room left in the array,

{

cout << "Next value: ";
cin >> temp; // so get next value

The program begins by reading the first input value into a temporary variable called
temp. Then the while test condition checks whether there is still room left in the array (i
< Arsize) and whether the input value is non-negative (temp >= 0).Ifit is, the program
copies the temp value to the array and increases the array index by one. At that point,
because array numbering starts at zero, i equals the total number of entries to date. That
is, if i starts out at 0, the first cycle through the loop assigns a value to naag(0] and then
sets i to 1.

The loop terminates when the array is filled or when the user enters a negative num-
ber. Note that the loop reads another value into temp only if i is less than Arsize—that
is, only if there is still room left in the array.

After it gets data, the program uses an if else statement to comment if no data was
entered (that is, if the first entry was a negative number) and to process the data if any is
present.

Setting Up Ranges with &&

The && operator also lets you set up a series of if else if else statements, with each
choice corresponding to a particular range of values. Listing 6.6 illustrates the approach. It
also shows a useful technique for handling a series of messages. Just as a pointer-to-char
variable can identify a single string by pointing to its beginning, an array of pointers-to-
char can identify a series of strings.You simply assign the address of each string to a differ-
ent array element. Listing 6.6 uses the qualify array to hold the addresses of four strings.
For example, qualify[1] holds the address of the string "mud tug-of-war\n".The pro-
gram can then use qualify[1] as it would any other pointer to a string—for example,
with cout or with strlen() or stremp (). Using the const qualifier protects these strings
from accidental alterations.

265

266 Chapter 6 Branching Statements and Logical Operators

Listing 6.6 more_and.cpp

// more_and.cpp -- using the logical AND operator
#include <iostream>
const char * qualify[4] = // an array of pointers
{ // to strings
"10,000-meter race.\n",
"mud tug-of-war.\n",
"masters canoe jousting.\n",
"pie-throwing festival.\n"
}i

int main()

using namespace std;

int age;

cout << "Enter your age in years: ";
cin >> age;

int index;

if (age > 17 && age < 35)
index = 0;

else if (age >= 35 && age < 50)
index = 1;

else if (age >= 50 && age < 65)
index = 2;

else
index = 3;

cout << "You qualify for the " << qualify[index];
return 0;

Here is a sample run of the program in Listing 6.6:

Enter your age in years: 87
You qualify for the pie-throwing festival.

The entered age doesn’t match any of the test ranges, so the program sets index to 3
and then prints the corresponding string.

Program Notes

In Listing 6.6, the expression age > 17 && age < 35 tests for ages between the two
values—that is, ages in the range 18-34.The expression age >= 35 && age < 50 uses the
>= operator to include 35 in its range, which is 35-49. If the program used age > 35 &&
age < 50, the value 35 would be missed by all the tests. When you use range tests, you
should check that the ranges don’t have holes between them and that they don’t overlap.

Logical Expressions

Also you need to be sure to set up each range correctly; see the sidebar “Range Tests,”
later in this section.

The if else statement serves to select an array index, which, in turn, identifies a par-
ticular string.

Range Tests

Note that each part of a range test should use the AND operator to join two complete rela-
tional expressions:

if (age > 17 && age < 35) // OK

Don’t borrow from mathematics and use the following notation:
if (17 < age < 35) // Don't do this!

If you make this mistake, the compiler won’t catch it as an error because it is still valid C++
syntax. The < operator associates from left to right, so the previous expression means the
following:

if ((17 < age) < 35)

But 17 < age is either true, or 1, or else false, or 0. In either case, the expression 17 <
age is less than 35, so the entire test is always true!

The Logical NOT Operator: !

The ! operator negates, or reverses the truth value of, the expression that follows it. That
is, if expression is true, then !expression is false—and vice versa. More precisely, if
expression is true, or nonzero, then !expression is false. Incidentally, many people
call the exclamation point bang, making !x “bang-ex” and ! 1x “bang-bang-ex.”

Usually you can more clearly express a relationship without using the ! operator:

if (! (x > 5)) // if (x <= 5) is clearer

But the ! operator can be useful with functions that return true/false values or values
that can be interpreted that way. For example, strcmp (s1,s2) returns a nonzero (true)
value if the two C-style strings s1 and s2 are different from each other and a zero value if
they are the same. This implies that 1strcmp (s1,s2) is true if the two strings are equal.

Listing 6.7 uses the technique of applying the ! operator to a function return value to
screen numeric input for suitability to be assigned to type int.The user-defined function
is_int (), which we’ll discuss further in a moment, returns true if its argument is within
the range of values that can be assigned to type int.The program then uses the test
while(!is_int (num)) to reject values that don’t fit in the range.

Listing 6.7 not.cpp

// not.cpp -- using the not operator
#include <iostream>
#include <climits>

267

Chapter 6 Branching Statements and Logical Operators

bool is_int (double) ;

int main()

{
using namespace std;
double num;

cout << "Yo, dude! Enter an integer value: ";

cin >> num;

while (!is_int (num)) // continue while num is not int-able
cout << "Out of range -- please try again: ";
cin >> num;

int val = int (num); // type cast

cout << "You've entered the integer " << val << "\nBye\n";

return 0;

bool is_int (double x)
if (x <= INT_MAX && x >= INT MIN) // use climits values
return true;
else
return false;

Here is a sample run of the program in Listing 6.7 on a system with a 32-bit int:

Yo, dude! Enter an integer value: 6234128679
Out of range -- please try again: -8000222333
Out of range -- please try again: 99999
You've entered the integer 99999

Bye

Program Notes
If you enter a too-large value to a program reading a type int, many C++ implementa-
tions simply truncate the value to fit, without informing you that data was lost. The pro-
gram in Listing 6.7 avoids that by first reading the potential int as a double.The double
type has more than enough precision to hold a typical int value, and its range is much
greater. Another choice for holding the input value would be the long long type, assum-
ing that it is wider than int.

The Boolean function is_int () uses the two symbolic constants (INT MAx and
INT MIN), defined in the climits file (discussed in Chapter 3,“Dealing with Data”), to
determine whether its argument is within the proper limits. If so, the program returns a
value of true; otherwise, it returns false.

Logical Expressions

The main () program uses a while loop to reject invalid input until the user gets it
right.You could make the program friendlier by displaying the int limits when the input
is out of range. After the input has been validated, the program assigns it to an int
variable.

Logical Operator Facts

As mentioned earlier in this chapter, the C++ logical OR and logical AND operators have
a lower precedence than relational operators. This means that an expression such as this

x >5 && x < 10

is interpreted this way:

(x > 5) && (x < 10)

The 1 operator, on the other hand, has a higher precedence than any of the relational
or arithmetic operators. Therefore, to negate an expression, you should enclose the expres-
sion in parentheses, like this:

1(x > 5) // is it false that x is greater than 5
Ix > 5 // is !x greater than 5

Incidentally, the second expression here is always false because !x can have only the
values true or false, which get converted to 1 or o.

The logical AND operator has a higher precedence than the logical OR operator. Thus
this expression:

age > 30 && age < 45 || weight > 300

means the following:

(age > 30 && age < 45) || weight > 300

That is, one condition is that age be in the range 31-44, and the second condition is
that weight be greater than 300.The entire expression is true if one or the other or both
of these conditions are true.

You can, of course, use parentheses to tell the program the interpretation you want. For
example, suppose you want to use && to combine the condition that age be greater than
50 or weight be greater than 300 with the condition that donation be greater than
1,000.You have to enclose the OR part within parentheses:

(age > 50 || weight > 300) && donation > 1000

Otherwise, the compiler combines the weight condition with the donation condition
instead of with the age condition.

Although the C++ operator precedence rules often make it possible to write com-
pound comparisons without using parentheses, the simplest course of action is to use
parentheses to group the tests, whether or not the parentheses are needed. It makes the
code easier to read, it doesn’t force someone else to look up some of the less commonly

269

270

Chapter 6 Branching Statements and Logical Operators

used precedence rules, and it reduces the chance of making errors because you don’t quite
remember the exact rule that applies.

C++ guarantees that when a program evaluates a logical expression, it evaluates it from
left to right and stops evaluation as soon as it knows what the answer is. Suppose, for
example, that you have this condition:

x =0 & 1.0 / x > 100.0

If the first condition is false, then the whole expression must be false.That’s because
for this expression to be true, each individual condition must be true. Knowing the first
condition is false, the program doesn’t bother evaluating the second condition. That’s
fortunate in this example because evaluating the second condition would result in divid-
ing by zero, which is not in a computer’s repertoire of possible actions.

Alternative Representations

Not all keyboards provide all the symbols used for the logical operators, so the C++ Stan-
dard provides alternative representations, as shown in Table 6.3. The identifiers and, or, and
not are C++ reserved words, meaning that you can’t use them as names for variables and
so on.They are not considered keywords because they are alternative representations of
existing language features. Incidentally, these are not reserved words in C, but a C program
can use them as operators, provided that the program includes the iso646.h header file.
C++ does not require using a header file.

Table 6.3 Logical Operators: Alternative Representations

Operator Alternative Representation
&& and

| or

! not

The cctype Library of Character Functions

C++ has inherited from C a handy package of character-related functions, prototyped in
the cctype header file (ctype.h, in the older style), that simplify such tasks as determining
whether a character is an uppercase letter or a digit or punctuation. For example, the
isalpha (ch) function returns a nonzero value if ch is a letter and a zero value otherwise.
Similarly, the ispunct (ch) function returns a true value only if ch is a punctuation char-
acter, such as a comma or period. (These functions have return type int rather than bool,
but the usual bool conversions allow you to treat them as type bool.)

Using these functions is more convenient than using the AND and OR operators. For
example, here’s how you might use AND and OR to test whether a character ch is an
alphabetic character:

if ((ch »>= 'a' & ch <= 'z') || (ch »>= 'A' && ch <= 'Z'))

The cctype Library of Character Functions

Compare that to using isalpha ():
if (isalpha(ch))

Not only is isalpha () easier to use, it is more general. The AND/OR form assumes
that character codes for A through Z are in sequence, with no other characters having
codes in that range. This assumption is true for ASCII codes, but it isn’t always true in
general.

Listing 6.8 demonstrates some functions from the cctype family. In particular, it uses
isalpha (), which tests for alphabetic characters; isdigits (), which tests for digit charac-
ters, such as 3; isspace (), which tests for whitespace characters, such as newlines, spaces,
and tabs; and ispunct (), which tests for punctuation characters. The program also reviews
the if else if structure and using a while loop with cin.get (char).

Listing 6.8 cctypes.cpp

// cctypes.cpp -- using the ctype.h library
#include <iostream>
#include <cctype> // prototypes for character functions
int main()
{

using namespace std;

cout << "Enter text for analysis, and type @"

" to terminate input.\n";

char ch;

int whitespace = 0;

int digits = 0;

int chars = 0;

int punct = 0;
int others = 0;

cin.get (ch); // get first character
while (ch != '@') // test for sentinel
{
if (isalpha(ch)) // is it an alphabetic character?
chars++;
else if (isspace(ch)) // is it a whitespace character?
whitespace++;
else if (isdigit (ch)) // is it a digit?
digits++;
else if (ispunct(ch)) // is it punctuation?
punct++;
else
others++;

cin.get (ch); // get next character

271

272 Chapter 6 Branching Statements and Logical Operators

cout << chars << " letters, "
<< whitespace << " whitespace, "
<< digits << " digits, "
<< punct << " punctuations, "
<< others << " others.\n";
return 0;

Here is a sample run of the program in Listing 6.8 (note that the whitespace count
includes newlines):

Enter text for analysis, and type @ to terminate input.
AdrenalVision International producer Adrienne Vismonger
announced production of their new 3-D film, a remake of

"My Dinner with Andre," scheduled for 2013. "Wait until

you see the the new scene with an enraged Collossipede!"@

177 letters, 33 whitespace, 5 digits, 9 punctuations, 0 others.

Table 6.4 summarizes the functions available in the cctype package. Some systems may
lack some of these functions or have additional ones.

Table 6.4 The cctype Character Functions

Function Name Return Value

isalnum() This function returns true if the argument is alphanumeric (that is,
a letter or a digit).

isalpha () This function returns true if the argument is alphabetic.

isblank () This function returns true if the argument is a space or a horizon-
tal tab.

iscntrl() This function returns true if the argument is a control character.

isdigit () This function returns true if the argument is a decimal digit (0-9).

isgraph () This function returns true if the argument is any printing character
other than a space.

islower () This function returns true if the argument is a lowercase letter.

isprint () This function returns true if the argument is any printing character,
including a space.

ispunct () This function returns true if the argument is a punctuation
character.

isspace () This function returns true if the argument is a standard white-

space character (that is, a space, formfeed, newline, carriage
return, horizontal tab, vertical tab).

isupper () This function returns true if the argument is an uppercase letter.

The ?: Operator

Table 6.4 The cctype Character Functions

Function Name Return Value

isxdigit () This function returns true if the argument is a hexadecimal digit
character (that is, 0-9, a—f, or A-F).

tolower () If the argument is an uppercase character, tolower () returns the

lowercase version of that character; otherwise, it returns the argu-
ment unaltered.

toupper () If the argument is a lowercase character, toupper () returns the
uppercase version of that character; otherwise, it returns the argu-
ment unaltered.

The ? : Operator

C++ has an operator that can often be used instead of the if else statement. This opera-
tor is called the conditional operator, written 2 :, and, for you trivia buffs, it is the only C++
operator that requires three operands. The general form looks like this:

expressionl ? expression2 : expression3

If expressioni is true, then the value of the whole conditional expression is the value
of expressionz. Otherwise, the value of the whole expression is the value of
expression3. Here are two examples that show how the operator works:

5>37?10 : 12 // 5 >3 is true, so expression value is 10
3 ==9? 25 : 18 // 3 == 9 is false, so expression value is 18

We can paraphrase the first example this way: If 5 is greater than 3, the expression eval-
uates to 10; otherwise, it evaluates to 12. In real programming situations, of course, the
expressions would involve variables.

Listing 6.9 uses the conditional operator to determine the larger of two values.

Listing 6.9 condit.cpp

// condit.cpp -- using the conditional operator
#include <iostream>
int main()
{
using namespace std;
int a, b;
cout << "Enter two integers: ";
cin >> a >> b;
cout << "The larger of " << a << " and " << b;
int c =a>b?a: b; // ¢ =a if a > b, elsec =D
cout << " is " << ¢ << endl;
return 0;

273

274

Chapter 6 Branching Statements and Logical Operators

Here is a sample run of the program in Listing 6.9:

Enter two integers: 25 28
The larger of 25 and 28 is 28

The key part of the program is this statement:

int c=a>b?a: b;

It produces the same result as the following statements:

int c¢;
if (a > b)
c = a;
else
c = b;

Compared to the if else sequence, the conditional operator is more concise but, at
first glance, less obvious. One difference between the two approaches is that the condi-
tional operator produces an expression and hence a single value that can be assigned or be
incorporated into a larger expression, as the program in Listing 6.9 does when it assigns
the value of the conditional expression to the variable c. The conditional operator’s con-
cise form, unusual syntax, and overall weird appearance make it a great favorite among
programmers who appreciate those qualities. One favorite trick for the reprehensible goal
of concealing the purpose of code is to nest conditional expressions within one another, as
the following mild example shows:

const char x[2] [20] = {"Jason ","at your service\n"};
const char * y = "Quillstone ";

for (int 1 = 1< 3; 1++)

0;
(1 <2)? 112 x [i] : vy : x[1]);

cout << (

This is merely an obscure (but, by no means maximally obscure) way to print the three
strings in the following order:
Jason Quillstone at your service

In terms of readability, the conditional operator is best suited for simple relationships
and simple expression values:
Xx=(x>y) ?Xx:Y;

If the code becomes more involved, it can probably be expressed more clearly as an if
else statement.

The switch Statement

Suppose you create a screen menu that asks the user to select one of five choices—for
example, Cheap, Moderate, Expensive, Extravagant, and Excessive.You can extend an if
else if else sequence to handle five alternatives, but the C++ switch statement more

The switch Statement

easily handles selecting a choice from an extended list. Here’s the general form for a
switch statement:

switch (integer-expression)

{

case labell : statement(s)
case label2 : statement(s)

default : statement (s)

A C++ switch statement acts as a routing device that tells the computer which line of
code to execute next. On reaching a switch statement, a program jumps to the line
labeled with the value corresponding to the value of integer-expression. For example,
if integer-expression has the value 4, the program goes to the line that has a case 4:
label. The value integer-expression, as the name suggests, must be an expression that
reduces to an integer value. Also each label must be an integer constant expression. Most
often, labels are simple int or char constants, such as 1 or 'q', or enumerators. If
integer-expression doesn’t match any of the labels, the program jumps to the line
labeled default.The default label is optional. If you omit it and there is no match, the
program jumps to the next statement following the switch (see Figure 6.3).

The switch statement is different from similar statements in languages such as Pascal in
a very important way. Each C++ case label functions only as a line label, not as a bound-
ary between choices. That is, after a program jumps to a particular line in a switch, it then
sequentially executes all the statements following that line in the switch unless you explic-
itly direct it otherwise. Execution does not automatically stop at the next case. To make
execution stop at the end of a particular group of statements, you must use the break
statement. This causes execution to jump to the statement following the switch.

Listing 6.10 shows how to use switch and break together to implement a simple
menu for executives. The program uses a showmenu () function to display a set of choices.
A switch statement then selects an action based on the user’s response.

if numis 5 if num is 2 switch (num)
- {
case 1 : statementt
Ie break;
\ case 2 : statement2
program jumps to here break;
case 3 : statement3
break;
{:default . statement4
program jumps to here }

Figure 6.3 The structure of switch statements.

275

276 Chapter 6 Branching Statements and Logical Operators

Note

Some hardware/operating system combinations treat the \a escape sequence (used in
case 1 in Listing 6.10) as silent.

Listing 6.10 switch.cpp

// switch.cpp -- using the switch statement
#include <iostream>
using namespace std;
void showmenu() ; // function prototypes
void report () ;
void comfort () ;
int main ()
{
showmenu () ;
int choice;
cin >> choice;
while (choice != 5)
{

switch (choice)

{

case 1 : cout << "\a\n";
break;
case 2 : report () ;
break;
case 3 cout << "The boss was in all day.\n";
break;
case 4 : comfort () ;
break;
default : cout << "That's not a choice.\n";
}
showmenu () ;

cin >> choice;

}

cout << "Bye!\n";

return 0;
1
void showmenu ()
{
cout << "Please enter 1, 2, 3, 4, or 5:\n"
"1) alarm 2) report\n"
"3) alibi 4) comfort\n"
"5) quit\n";
1

void report ()

The switch Statement

cout << "It's been an excellent week for business.\n"
"Sales are up 120%. Expenses are down 35%.\n";

}

void comfort ()
{
cout << "Your employees think you are the finest CEO\n"
"in the industry. The board of directors think\n"
"you are the finest CEO in the industry.\n";

Here is a sample run of the executive menu program in Listing 6.10:

Please enter 1, 2, 3, 4, or 5:
1) alarm 2) report
3) alibi 4) comfort
5) quit

4

Your employees think you are the finest CEO
in the industry. The board of directors think
you are the finest CEO in the industry.
Please enter 1, 2, 3, 4, or 5:

1) alarm 2) report
3) alibi 4) comfort
5) quit

2

It's been an excellent week for business.
Sales are up 120%. Expenses are down 35%.
Please enter 1, 2, 3, 4, or 5:

1) alarm 2) report
3) alibi 4) comfort
5) quit

6

That's not a choice.

Please enter 1, 2, 3, 4, or 5:
1) alarm 2) report
3) alibi 4) comfort
5) quit

5

Bye!

The while loop terminates when the user enters 5. Entering 1 through 4 activates the
corresponding choice from the switch list, and entering 6 triggers the default statements.

Note that input has to be an integer for this program to work correctly. If, for example,
you enter a letter, the input statement will fail, and the loop will cycle endlessly until you
kill the program.To deal with those who don'’t follow instructions, it’s better to use char-

acter input.

277

278

Chapter 6 Branching Statements and Logical Operators

As noted earlier, this program needs the break statements to confine execution to a
particular portion of a switch statement.To see that this is so, you can remove the break
statements from Listing 6.10 and see how it works afterward.You’ll find, for example, that
entering 2 causes the program to execute all the statements associated with case labels 2, 3,
4,and the default. C++ works this way because that sort of behavior can be useful. For
one thing, it makes it simple to use multiple labels. For example, suppose you rewrote
Listing 6.10 using characters instead of integers as menu choices and switch labels. In that
case, you could use both an uppercase and a lowercase label for the same statements:

char choice;
cin >> choice;
while (choice != 'Q' && choice != 'q')

{

switch (choice)
{
case 'a':
case 'A': cout << "\a\n";
break;
case 'r':
case 'R': report();
break;
case '1':
case 'L': cout << "The boss was in all day.\n";
break;
case 'c':
case 'C': comfort();
break;
default : cout << "That's not a choice.\n";
1
showmenu () ;

cin >> choice;

Because there is no break immediately following case 'a', program execution passes
on to the next line, which is the statement following case 'A'.

Using Enumerators as Labels

Listing 6.11 illustrates using enum to define a set of related constants and then using the
constants in a switch statement. In general, cin doesn’t recognize enumerated types (it
can’t know how you will define them), so the program reads the choice as an int.When
the switch statement compares the int value to an enumerator case label, it promotes the
enumerator to int.Also the enumerators are promoted to type int in the while loop test
condition.

The switch Statement

Listing 6.11 enum.cpp

// enum.cpp -- using enum

#include <iostreams>

// create named constants for 0 - 6

enum {red, orange, yellow, green, blue, violet, indigo};

int main()
{
using namespace std;
cout << "Enter color code (0-6): ";
int code;
cin >> code;
while (code >= red && code <= indigo)

{

switch (code)

{

case red : cout << "Her lips were red.\n"; break;

case orange : cout << "Her hair was orange.\n"; break;
case yellow : cout << "Her shoes were yellow.\n"; break;
case green : cout << "Her nails were green.\n"; break;
case blue : cout << "Her sweatsuit was blue.\n"; break;
case violet : cout << "Her eyes were violet.\n"; break;
case indigo : cout << "Her mood was indigo.\n"; break;

}

cout << "Enter color code (0-6): ";
cin >> code;

cout << "Bye\n";

return 0;

Here’s sample output from the program in Listing 6.11:

Enter color code (0-6): 3
Her nails were green.
Enter color code (0-6): 5
Her eyes were violet.
Enter color code (0-6): 2
Her shoes were yellow.
Enter color code (0-6): 8
Bye

switchand if else

Both the switch statement and the if else statement let a program select from a list of
alternatives. The if else is the more versatile of the two. For example, it can handle
ranges, as in the following:

279

280

Chapter 6 Branching Statements and Logical Operators

if (age > 17 && age < 35)
index = 0;

else if (age >= 35 && age < 50)
index = 1;

else if (age >= 50 && age < 65)
index = 2;

else
index = 3;

The switch statement, on the other hand, isn’t designed to handle ranges. Each switch
case label must be a single value. Also that value must be an integer (which includes char),
o0 a switch statement can’t handle floating-point tests. And the case label value must be a
constant. If your alternatives involve ranges or floating-point tests or comparing two vari-
ables, you should use if else.

If, however, all the alternatives can be identified with integer constants, you can use a
switch or an if else statement. Because that’s precisely the situation that the switch
statement is designed to process, the switch statement is usually the more efficient choice
in terms of code size and execution speed, unless there are only a couple alternatives from
which to choose.

Tip
If you can use either an if else if sequence or a switch statement, the usual practice
is to use switch if you have three or more alternatives.

The break and continue Statements

The break and continue statements enable a program to skip over parts of the code.You
can use the break statement in a switch statement and in any of the loops. It causes pro-
gram execution to pass to the next statement following the switch or the loop.The
continue statement is used in loops and causes a program to skip the rest of the body of
the loop and then start a new loop cycle (see Figure 6.4).

Listing 6.12 shows how the two statements work. The program lets you enter a line of
text. The loop echoes each character and uses break to terminate the loop if the character
is a period. This shows how you can use break to terminate a loop from within when
some condition becomes true. Next the program counts spaces but not other characters.
The loop uses continue to skip over the counting part of the loop when the character
isn’t a space.

Listing 6.12 jump.cpp

// jump.cpp -- using continue and break
#include <iostreams>

const int ArSize = 80;

int main()

{

using namespace std;

The break and continue Statements

char line[ArSize];
int spaces = 0;

cout << "Enter a line of text:\n";

cin.get (line, ArSize);

cout << "Complete line:\n" << line << endl;
cout << "Line through first period:\n";

for (int 1 = 0; line[di] != '\0'; i++)
{
cout << linel[i]; // display character
if (line[i] == '.') // quit if it's a period
break;
if (line(i] != ' ') // skip rest of loop
continue;
spaces++;

}

cout << "\n" << spaces << " spaces\n";
cout << "Done.\n";
return 0;

while (cin.get(ch))
{
statementi
if (ch == "\n'")
contlnuej
statement2
}
statement3

continue skips rest of loop body and starts a new cycle

while (cin.get(ch))
{

statement1

if (ch == '"\n')

statement?2

}
|_———->statement3

I break skips rest of loop and goes to following statement

Figure 6.4 The structure of continue and break statements.

281

282 Chapter 6 Branching Statements and Logical Operators

Here’s a sample run of the program in Listing 6.12:

Enter a line of text:

Let's do lunch today. You can pay!
Complete line:

Let's do lunch today. You can pay!
Line through first period:

Let's do lunch today.

3 spaces

Done.

Program Notes

Note that whereas the continue statement causes the program in Listing 6.12 to skip the
rest of the loop body, it doesn’t skip the loop update expression. In a for loop, the
continue statement makes the program skip directly to the update expression and then to
the test expression. For a while loop, however, continue makes the program go directly
to the test expression. So any update expression in a while loop body following the
continue would be skipped. In some cases, that could be a problem.

This program doesn’t have to use continue. Instead, it could use this code:
if (lineli] == ' 1)

spaces++;

However, the continue statement can make a program more readable when several
statements follow the continue.That way, you don’t need to make all those statements
part of an if statement.

C++, like C, also has a goto statement. A statement like this means to jump to the
location bearing the paris: label:

goto paris;
That is, you can have code like this:

char ch;

cin >> ch;

if (ch == 'P'")
goto paris;

cout <<

paris: cout << "You've just arrived at Paris.\n";

In most circumstances (some would say in all circumstances), using goto is a bad hack,
and you should use structured controls, such as if else, switch, continue, and the like,
to control program flow.

Number-Reading Loops

Number-Reading Loops

Say you're preparing a program to read a series of numbers into an array. You want to give
the user the option to terminate input before filling the array. One way to do this is utilize
how cin behaves. Consider the following code:

int n;

cin >> n;

What happens if the user responds by entering a word instead of a number? Four
things occur in such a mismatch:

= The value of n is left unchanged.
= The mismatched input is left in the input queue.
= An error flag is set in the cin object.

= The call to the cin method, if converted to type bool, returns false.

The fact that the method returns false means that you can use non-numeric input to
terminate a number-reading loop. The fact that non-numeric input sets an error flag
means that you have to reset the flag before the program can read more input. The
clear () method, which also resets the end-of-file (EOF) condition (see Chapter 5), resets
the bad input flag. (Either bad input or the EOF can cause cin to return false. Chapter
17, “Input, Output, and Files,” discusses how to distinguish between the two cases.) Let’s
look at a couple examples that illustrate these techniques.

Say you want to write a program that calculates the average weight of your day’s catch
of fish. There’s a five-fish limit, so a five-element array can hold all the data, but it’s possi-
ble that you could catch fewer fish. Listing 6.13 uses a loop that terminates if the array is
full or if you enter non-numeric input.

Listing 6.13 cinfish.cpp

// cinfish.cpp -- non-numeric input terminates loop
#include <iostreams
const int Max = 5;
int main()
{

using namespace std;
// get data

double fish[Max];

cout << "Please enter the weights of your fish.\n";

cout << "You may enter up to " << Max

<< " fish <g to terminate>.\n";

cout << "fish #1: ";

int 1 = 0;

while (i < Max && cin >> fish[i]) {

if (++1i < Max)

cout << "fish #" << i+l << ": ";

283

284

Chapter 6 Branching Statements and Logical Operators

}

// calculate average
double total = 0.0;
for (int j = 0; J < 1; Jj++)
total += fish[jl;
// report results
if (i == 0)
cout << "No fish\n";
else
cout << total / i << " = average weight of "
<< 1 << " fish\n";
cout << "Done.\n";
return 0;

Note

As mentioned earlier, some execution environments require additional code to keep the win-
dow open so that you can see the output. In this example, because the input 'q' turns off
further input, the treatment is more elaborate:

if (lcin) // input terminated by non-numeric response

{
cin.clear(); // reset input
cin.get () ; // read q
1
cin.get () ; // read end of line after last input
cin.get () ; // wait for user to press <Enters>

You also could use code similar to this in Listing 6.13 if you wanted the program to accept
more input after exiting the loop.

Listing 6.14 further illustrates using the cin return value and resetting cin.

The expression cin >> fish[i] in Listing 6.13 is really a cin method function call,
and the function returns cin. If cin is part of a test condition, it’s converted to type bool.
The conversion value is true if input succeeds and false otherwise. A false value for
the expression terminates the loop. By the way, here’s a sample run of the program:

Please enter the weights of your fish.
You may enter up to 5 fish <g to terminates.

fish #1: 30
fish #2: 35
fish #3: 25
fish #4: 40
fish #5: q

32.5 = average weight of 4 fish
Done.

Number-Reading Loops

Note the following line of code:

while (i < Max && cin >> fish[i]) {

Recall that C++ doesn’t evaluate the right side of a logical AND expression if the left
side is false. In such a case, evaluating the right side means using cin to place input into
the array. If i does equal Max, the loop terminates without trying to read a value into a
location past the end of the array.

The preceding example doesn’t attempt to read any input after non-numeric input.
Let’s look at a case that does. Suppose you are required to submit exactly five golf scores
to a C++ program to establish your average. If a user enters non-numeric input, the pro-
gram should object, insisting on numeric input. As you’ve seen, you can use the value of a
cin input expression to test for non-numeric input. Suppose the program finds that the
user enters the wrong stuff. It needs to take three steps:

1. Reset cin to accept new input.
2. Get rid of the bad input.

3. Prompt the user to try again.

Note that the program has to reset cin before getting rid of the bad input. Listing 6.14
shows how these tasks can be accomplished.

Listing 6.14 cingolf.cpp

// cingolf.cpp -- non-numeric input skipped
#include <iostream>
const int Max = 5;
int main()
{
using namespace std;
// get data
int golf [Max];
cout << "Please enter your golf scores.\n";
cout << "You must enter " << Max << " rounds.\n";
int i;
for (1 = 0; 1 < Max; i++)
{

cout << "round #" << i+l << ": ";

while (!(cin >> golf[il)) {
cin.clear(); // reset input
while (cin.get() != '\n'")
continue; // get rid of bad input

cout << "Please enter a number: ";

}

// calculate average

285

286

Chapter 6 Branching Statements and Logical Operators

double total = 0.0;
for (i = 0; 1 < Max; i++)
total += golf[i];
// report results
cout << total / Max << " = average score "
<< Max << " rounds\n";
return 0;

Here is a sample run of the program in Listing 6.14:

Please enter your golf scores.
You must enter 5 rounds.

round #1: 88

round #2: 87

round #3: must i?

Please enter a number: 103
round #4: 94

round #5: 86

91.6 = average score 5 rounds

Program Notes
The heart of the error-handling code in Listing 6.14 is the following;:

while (!(cin >> golf[i])) {
cin.clear(); // reset input
while (cin.get() != '\n')

continue; // get rid of bad input
cout << "Please enter a number: ";

If the user enters 88, the cin expression is true, and a value is placed in the array. Fur-
thermore, because cin is true, the expression ! (cin >> golf[i]) is false,and this
inner loop terminates. But if the user enters must i?, the cin expression is false, nothing
is placed into the array, the expression ! (cin >> golf[i]) is true, and the program
enters the inner while loop.The first statement in the loop uses the clear () method to
reset input. If you omit this statement, the program refuses to read any more input. Next,
the program uses cin.get () in a while loop to read the remaining input through the end
of the line. This gets rid of the bad input, along with anything else on the line. Another
approach is to read to the next whitespace, which gets rid of bad input one word at a time
instead of one line at a time. Finally, the program tells the user to enter a number.

Simple File Input/Output

Simple File Input/Output
Sometimes keyboard input is not the best choice. For example, suppose you've written a
program to analyze stocks, and you’ve downloaded a file of 1,000 stock prices. It would be
far more convenient to have the program read the file directly than to hand-enter all the
values. Similarly, it can be convenient to have a program write output to a file so that you
have a permanent record of the results.

Fortunately, C++ makes it simple to transfer the skills you’ve acquired for keyboard
input and display output (collectively termed console I/0) to file input and output (file

I/0). Chapter 17 explores these topics more extensively, but we’ll look at simple text file
170 now.

Text 1/0 and Text Files

Let’s re-examine the concept of text I/O.When you use cin for input, the program views
input as a series of bytes, with each byte being interpreted as a character code. No matter
what the destination data type, the input begins as character data—that is, text data. The
cin object then has the responsibility of translating text to other types.To see how this
works, let’s examine how different code handles the same line of input.

Suppose you have the following sample line of input:

38.5 19.2

Let’s see how this line of input is handled by cin when used with different data types.
First, let’s try type char:

char ch;

cin >> ch;

The first character in the input line is assigned to ch. In this case, the first character is
the digit 3, and the character code (in binary) for this digit is stored in ch.The input and
the destination are both characters, so no translation is needed. (Note that it’s not the
numeric value 3 that is stored; rather, it is the character code for the digit 3.) After the
input statement, the digit character 8 1s the next character in the input queue and will be
the next character examined by the next input operation.

Next, let’s try the int type with the same input:
int n;

cin >> n;

In this case, cin reads up to the first non-digit character. That is, it reads the 3 digit and
the 8 digit, leaving the period as the next character in the input queue. Then cin com-
putes that these two characters correspond to the numeric value 38, and the binary code
for 38 is copied to n.

Next, let’s try the double type:

double x;

cin >> x;

287

288

Chapter 6 Branching Statements and Logical Operators

In this case, cin reads up to the first character that’s not part of a floating-point num-
ber. That is, it reads the 3 digit, the 8 digit, the period character, and the 5 digit, leaving
the space as the next character in the input queue. Then cin computes that these four
characters correspond to the numeric value 38.5, and the binary code (floating-point for-
mat) for 38.5 is copied to x.

Next, let’s try the char array type:
char word[50];

cin >> word;

In this case, cin reads up to the whitespace character. That is, it reads the 3 digit, the 8
digit, the period character, and the 5 digit, leaving the space as the next character in the
input queue. Then cin stores the character code for these four characters in the array word
and adds a terminating null character. No translation is needed.

Finally, let’s try an input variant for the char array type:
char word[50];
cin.geline (word,50) ;

In this case, cin reads up through the newline character (the sample input line had
fewer than 50 characters). All the characters through the final 2 digit are stored in the array
word, and a null character is added. The newline character is discarded, and the next charac-
ter in the input queue will be the first character on the next line. No translation is needed.

On output, the opposite translations take place. That is, integers are converted to
sequences of digit characters, and floating-point numbers are converted to sequences of
digits and other characters (for example, 284.53 or -1.587E+06). Character data requires
no translation.

The main point to this is that all the input starts out as text. Therefore, the file equiva-
lent to console input is a text file—that is, a file in which each byte stores a character
code. Not all files are text files. For example, databases and spreadsheets store numeric data
in numeric forms—that is, in binary integer or binary floating-point form. Also, word
processing files may contain text information, but they also contain non-text data to
describe formatting, fonts, printers, and the like.

The file 170 discussed in this chapter parallels console I/O and thus should be used
with text files. To create a text file for input, you use a text editor, such as Notepad for
‘Windows, or vi or emacs for Unix/Linux.You can use a word processor, as long as you
save the file in text format. The code editors that are part of IDEs also produce text files;
indeed, the source code files are examples of text files. Similarly, you can use text editors
to look at files created with text output.

Writing to a Text File

For file output, C++ uses analogs to cout. So to prepare for file output, let’s review some
basic facts about using cout for console output:

Simple File Input/Output

= You must include the iostream header file.
= The iostream header file defines an ostream class for handling output.
» The iostream header file declares an ostream variable, or object, called cout.

= You must account for the std namespace; for example, you can use the using direc-
tive or the std: : prefix for elements such as cout and endl.

= You can use cout with the << operator to read a variety of data types.
File output parallels this very closely:

= You must include the £stream header file.
= The fstream header file defines an ofstream class for handling output.

= You need to declare one or more ofstream variables, or objects, which you can
name as you please, as long as you respect the usual naming conventions.

= You must account for the std namespace; for example, you can use the using direc-
tive or the std:: prefix for elements such as ofstream.

= You need to associate a specific of stream object with a specific file; one way to do
5o is to use the open () method.

= When you're finished with a file, you should use the close () method to close the file.
= You can use an ofstream object with the << operator to output a variety of data types.
Note that although the iostream header file provides a predefined ostream object

called cout, you have to declare your own ofstream object, choosing a name for it and
associating it with a file. Here’s how you declare such objects:

ofstream outFile; // outFile an ofstream object
ofstream fout; // fout an ofstream object

Here’s how you can associate the objects with particular files:

outFile.open("fish.txt"); // outFile used to write to the fish.txt file
char filename[50];

cin >> filename; // user specifies a name

fout.open (filename) ; // fout used to read specified file

Note that the open () method requires a C-style string as its argument. This can be a
literal string or a string stored in an array.
Here’s how you can use these objects:

double wt = 125.8;

outFile << wt; // write a number to fish.txt
char line[81] = "Objects are closer than they appear.";
fout << line << endl; // write a line of text

The important point is that after you've declared an ofstream object and associated it
with a file, you use it exactly as you would use cout.All the operations and methods

289

290 Chapter 6 Branching Statements and Logical Operators

available to cout, such as <<, endl, and setf (), are also available to ofstream objects, such
as outFile and fout in the preceding examples.
In short, these are the main steps for using file output:

1. Include the £stream header file.

2. Create an of stream object.

3. Associate the of stream object with a file.
4

Use the ofstream object in the same manner you would use cout.

The program in Listing 6.15 demonstrates this approach. It solicits information from
the user, sends output to the display, and then sends the same output to a file.You can use
a text editor to examine the output file.

Listing 6.15 outfile.cpp

// outfile.cpp -- writing to a file
#include <iostreams>
#include <fstream> // for file I/0O

int main()

{

using namespace std;

char automobile[50] ;
int year;

double a price;
double d _price;

ofstream outFile; // create object for output
outFile.open("carinfo.txt"); // associate with a file

cout << "Enter the make and model of automobile: ";
cin.getline (automobile, 50);

cout << "Enter the model year: ";

cin >> year;

cout << "Enter the original asking price: ";

cin >> a_price;

d price = 0.913 * a _price;

// display information on screen with cout

cout << fixed;

cout .precision(2);

cout.setf (ios_base::showpoint) ;

cout << "Make and model: " << automobile << endl;
cout << "Year: " << year << endl;

Simple File Input/Output

cout << "Was asking $" << a_price << endl;
cout << "Now asking $" << d_price << endl;

// now do exact same things using outFile instead of cout

outFile << fixed;

outFile.precision(2);
outFile.setf(ios_base::showpoint);

outFile << "Make and model: " << automobile << endl;
outFile << "Year: " << year << endl;

outFile << "Was asking $" << a_price << endl;
outFile << "Now asking $" << d_price << endl;

outFile.close(); // done with file
return 0;

Note that the final section of the program in Listing 6.15 duplicates the cout section,
with cout replaced by outFile. Here is a sample run of this program:

Enter the make and model of automobile: Flitz Perky
Enter the model year: 2009

Enter the original asking price: 13500

Make and model: Flitz Perky

Year: 2009

Was asking $13500.00

Now asking $12325.50

The screen output comes from using cout. If you check the directory or folder that
contains the executable program, you should find a new file called carinfo.txt. (Or it
may be in some other folder, depending on how the compiler is configured.) It contains
the output generated by using outFile. If you open it with a text editor, you should find
the following contents:

Make and model: Flitz Perky
Year: 2009

Was asking $13500.00

Now asking $12325.50

As you can see, outFile sends precisely the same sequence of characters to the
carinfo.txt file that cout sends to the display.

Program Notes
After the program in Listing 6.15 declares an ofstream object, you can use the open()
method to associate the object with a particular file:

ofstream outFile; // create object for output
outFile.open("carinfo.txt"); // associate with a file

291

292

Chapter 6 Branching Statements and Logical Operators

When the program is done using a file, it should close the connection:

outFile.close() ;

Notice that the close () method doesn’t require a filename. That’s because outFile
has already been associated with a particular file. If you forget to close a file, the program
will close it automatically if the program terminates normally.

Notice that outFile can use the same methods that cout does. Not only can it use the
<< operator, but it can use the various formatting methods, such as setf () and
precision ().These methods affect only the object that invokes the method. For example,
you can provide different values for different objects:

cout.precision(2) ; // use a precision of 2 for the display
outFile.precision(4); // use a precision of 4 for file output

The main point you should remember is that after you set up an ofstream object such
as outFile, you use it in precisely the same matter as you use cout.
Let’s go back to the open () method:

outFile.open("carinfo.txt");

In this case, the file carinfo. txt does not exist before the program runs. In this cir-
cumstance, the open () method creates a brand new file by that name. When the file
carinfo.txt exists, what happens if you run the program again? By default, open () first
truncates the file; that is, it trims carinfo. txt to zero length, discarding the current con-

tents. The contents are then replaced with the new output. Chapter 17 reveals how to
override this default behavior.

Caution
When you open an existing file for output, by default it is truncated to a length of zero bytes,
so the contents are lost.

It is possible that an attempt to open a file for output might fail. For example, a file
having the requested name might already exist and have restricted access. Therefore, a
careful programmer would check to see if the attempt succeeded.You’'ll learn the tech-
nique for this in the next example.

Reading from a Text File

Next, let’s examine text file input. It’s based on console input, which has many elements.
So let’s begin with a summary those elements:

= You must include the iostream header file.
» The iostream header file defines an istream class for handling input.
s The iostream header file declares an istream variable, or object, called cin.

= You must account for the std namespace; for example, you can use the using direc-
tive or the std: : prefix for elements such as cin.

Simple File Input/Output

= You can use cin with the >> operator to read a variety of data types.

= You can use cin with the get () method to read individual characters and with the
getline () method to read a line of characters at a time.

= You can use cin with methods such as eof () and fail () to monitor the success of
an input attempt.

= The object cin itself, when used as a test condition, is converted to the Boolean
value true if the last read attempt succeeded and to false otherwise.

File input parallels this very closely:

= You must include the £stream header file.
» The fstream header file defines an ifstream class for handling input.

= You need to declare one or more ifstream variables, or objects, which you can
name as you please, as long as you respect the usual naming conventions.

= You must account for the std namespace; for example, you can use the using direc-
tive or the std: : prefix for elements such as ifstream.

= You need to associate a specific ifstream object with a specific file; one way to do
so is to use the open () method.

= When you're finished with a file, you should use the close () method to close the file.
= You can use an ifstream object with the >> operator to read a variety of data types.

= You can use an ifstream object with the get () method to read individual charac-
ters and with the getline () method to read a line of characters at a time.

= You can use an ifstream object with methods such as eof () and fail() to moni-
tor the success of an input attempt.

= An ifstream object itself, when used as a test condition, is converted to the
Boolean value true if the last read attempt succeeded and to false otherwise.

Note that although the iostream header file provides a predefined istream object
called cin, you have to declare your own ifstream object, choosing a name for it and
associating it with a file. Here’s how you declare such objects:

ifstream inFile; // inFile an ifstream object
ifstream fin; // fin an ifstream object

Here’s how you can associate them with particular files:

inFile.open("bowling.txt"); // inFile used to read bowling.txt file
char filename[50];

cin >> filename; // user specifies a name
fin.open(filename) ; // fin used to read specified file

Note that the open () method requires a C-style string as its argument. This can be a
literal string or a string stored in an array.

293

294

Chapter 6 Branching Statements and Logical Operators

Here’s how you can use these objects:

double wt;

inFile >> wt; // read a number from bowling.txt
char line[81];

fin.getline(line, 81); // read a line of text

The important point is that after you’ve declared an ifstream object and associated it
with a file, you can use it exactly as you would use cin.All the operations and methods
available to cin are also available to ifstream objects, such as inFile and fin in the pre-
ceding examples.

What happens if you attempt to open a non-existent file for input? This error causes
subsequent attempts to use the ifstream object for input to fail. The preferred way to
check whether a file was opened successfully is to use the is_open () method.You can use

code like this:

inFile.open("bowling.txt");
if (!inFile.is open())

{

exit (EXIT_FAILURE) ;

The is_open () method returns true if the file was opened successfully, so the expres-
sion !inFile.is open () is true if the attempt fails. The exit () function is prototyped in
the cstdlib header file, which also defines EXIT FAILURE as an argument value used to
communicate with the operating system. The exit () function terminates the program.

The is_open() method is relatively new to C++. If your compiler doesn’t support it,
you can use the older good () method instead. As Chapter 17 discusses, good () doesn’t
check quite as extensively as is_open () for possible problems.

The program in Listing 6.16 opens a file specified by the user, reads numbers from the
file, and reports the number of values, their sum, and their average. It’s important that you
design the input loop correctly, and the following “Program Notes” section discusses this
in more detail. Notice that this program benefits greatly from using if statements.

Listing 6.16 sumafile.cpp

// sumafile.cpp -- functions with an array argument
#include <iostream>

#include <fstream> // file I/0 support
#include <cstdlibs // support for exit()
const int SIZE = 60;

int main()

{

using namespace std;
char filename[SIZE];
ifstream inFile; // object for handling file input

Simple File Input/Output

cout << "Enter name of data file: ";

cin.getline(filename, SIZE);

inFile.open(filename); // associate inFile with a file

if (!inFile.is open()) // failed to open file

{
cout << "Could not open the file " << filename << endl;
cout << "Program terminating.\n";
exit(EXIT_FAILURE);

}

double value;

double sum = 0.0;

int count = 0; // number of items read

inFile >> value; // get first value

while (inFile.good()) // while input good and not at EOF
++count ; // one more item read
sum += value; // calculate running total
inFile >> value; // get next value

}

if (inFile.eof())

cout << "End of file reached.\n";
else if (inFile.fail())

cout << "Input terminated by data mismatch.\n";
else

cout << "Input terminated for unknown reason.\n";
if (count == 0)

cout << "No data processed.\n";

else

cout << "Items read: " << count << endl;

cout << "Sum: " << sum << endl;

cout << "Average: " << sum / count << endl;
inFile.close() ; // finished with the file
return 0;

To use the program in Listing 6.16, you first have to create a text file that contains
numbers.You can use a text editor, such as the text editor you use to write source code,
to create this file. Let’s assume that the file is called scores.txt and has the following
contents:

18 19 18.5 13.5 14

16 19.5 20 18 12 18.5
17.5

295

296 Chapter 6 Branching Statements and Logical Operators

The program has to be able to find the file. Typically, unless your input includes a path-
name with the file, the program will look in the same folder or directory that contains the
executable file.

Caution

A Windows text file uses the carriage return character followed by a linefeed character to ter-
minate a line of text. (The usual C++ text mode translates this combination to newline char-
acter when reading a file and reverses the translation when writing to a file.) Some text
editors, such as the Metrowerks CodeWarrior IDE editor, don’t automatically add a this com-
bination to the final line. Therefore, if you use such an editor, you need to press the Enter
key after typing the final text and before exiting the file.

Here’s a sample run of the program in Listing 6.16:
Enter name of data file: scores.txt
End of file reached.
Items read: 12
Sum: 204.5
Average: 17.0417

Program Notes
Instead of hard-coding a filename, the program in Listing 6.16 stores a user-supplied
name in the character array filename.Then the array is used as an argument to open () :

inFile.open (filename) ;

As discussed earlier in this chapter, it’s vital to test whether the attempt to open the file
succeeded. Here are a few of the things that might go wrong: The file might not exist, the
file might be located in another directory or file folder, access might be denied, and the
user might mistype the name or omit a file extension. Many a beginner has spent a long
time trying to figure what’s wrong with a file-reading loop when the real problem was
that the program didn’t open the file. Testing for file-opening failure can save you such
misspent effort.

You need to pay close attention to the proper design of a file-reading loop. There are
several things to test for when reading from a file. First, the program should not try to
read past the EOEThe eof () method returns true if the most recent attempt to read
data ran into the EOF Second, the program might encounter a type mismatch. For
instance, Listing 6.16 expects a file containing only numbers. The fail () method returns
true if the most recent read attempt encountered a type mismatch. (This method also
returns true if the EOF is encountered.) Finally, something unexpected may go wrong—
for example, a corrupted file or a hardware failure. The bad () method returns true if the
most recent read attempt encountered such a problem. Rather than test for these condi-
tions individually, it’s simpler to use the good () method, which returns true if nothing
when wrong:

Simple File Input/Output

while (inFile.good()) // while input good and not at EOF

{

Then, if you like, you can use the other methods to determine exactly why the loop
terminated:

if (inFile.eof())

cout << "End of file reached.\n";
else if (inFile.fail())

cout << "Input terminated by data mismatch.\n";
else

cout << "Input terminated for unknown reason.\n";

This code comes immediately after the loop so that it investigates why the loop termi-
nated. Because eof () tests just for the EOF and fail() tests for both the EOF and type
mismatch, this code tests for the EOF first. That way, if execution reaches the else if
test, the EOF has already been excluded, so a true value for £ail () unambiguously iden-
tifies type mismatch as the cause of loop termination.

It’s particularly important that you understand that good () reports on the most recent
attempt to read input. That means there should be an attempt to read input immediately
before applying the test. A standard way of doing that is to have one input statement
immediately before the loop, just before the first execution of the loop test, and a second
input statement at the end of the loop, just before subsequent executions of the loop test:

// standard file-reading loop design
inFile >> value; // get first value
while (inFile.good()) // while input good and not at EOF

{
// loop body goes here
inFile >> value; // get next value

You can condense this somewhat by using the fact that the following expression evalu-
ates to inFile and that inFile, when placed in a context in which a bool value is
expected, evaluates to inFile.good ()—that is, to true or false:

inFile >> value

Thus, you can replace the two input statements with a single input statement used as a
loop test. That is, you can replace the preceding loop structure with this:

// abbreviated file-reading loop design
// omit pre-loop input
while (inFile >> value) // read and test for success
{
// loop body goes here
// omit end-of-loop input

297

298

Chapter 6 Branching Statements and Logical Operators

This design still follows the precept of attempting to read before testing because to
evaluate the expression inFile >> value,the program first has to attempt to read a
number into value.

Now you know the rudiments of file I/O.

Summary

Programs and programming become more interesting when you introduce statements
that guide the program through alternative actions. (Whether this also makes the pro-
grammer more interesting is a point you may wish to investigate.) C++ provides the if
statement, the if else statement, and the switch statement as means for managing
choices. The C++ if statement lets a program execute a statement or statement block
conditionally. That is, the program executes the statement or block if a particular condi-
tion is met. The C++ if else statement lets a program select from two choices which
statement or statement block to execute.You can append additional if else statements
to such a statement to present a series of choices. The C++ switch statement directs the
program to a particular case in a list of choices.

C++ also provides operators to help in decision making. Chapter 5 discusses the rela-
tional expressions, which compare two values. The if and if else statements typically
use relational expressions as test conditions. By using C++’s logical operators (&, | |, and
1), you can combine or modify relational expressions to construct more elaborate tests.
The conditional operator (2 :) provides a compact way to choose from two values.

The cctype library of character functions provides a convenient and powerful set of
tools for analyzing character input.

Loops and selection statements are useful tools for file I/O, which closely parallels
console I/O. After you declare ifstream and ofstream objects and associate them with
files, you can use these objects in the same manner you use cin and cout.

With C++’ loops and decision-making statements, you have the tools for writing
interesting, intelligent, and powerful programs. But we’ve only begun to investigate the
real powers of C++. Next, we’ll look at functions.

Chapter Review

1. Consider the following two code fragments for counting spaces and newlines:

// Version 1

while (cin.get(ch)) // quit on eof
{
if (ch == ' ")
spaces++;
if (ch == '"\n'")
newlines++;

// Version 2

while (cin.get(ch)) // quit on eof
{
if (ch == ')
spaces++;
else if (ch == '\n')
newlines++;

What advantages, if any, does the second form have over the first?
2. In Listing 6.2, what is the effect of replacing ++ch with ch+1?

3. Carefully consider the following program:
#include <iostream>
using namespace std;
int main()
{
char ch;
int ctl, ct2;

ctl = ct2 = 0;
while ((ch = cin.get()) != '$")

{

cout << ch;

ctl++;
if (ch = '$")
ct2++;

cout << ch;

}

cout <<"ctl = " << ctl << ", ct2 = " << ct2 << "\n";
return 0;

}

Suppose you provide the following input, pressing the Enter key at the end of each

line:
Hil
Send $10 or $20 now!
What is the output? (Recall that input is buffered.)
4. Construct logical expressions to represent the following conditions:
a. weight is greater than or equal to 115 but less than 125.
b. chis goro.
x is even but is not 26.
d. xis even but is not a multiple of 26.

e. donation is in the range 1,000-2,000 or guest is 1.

Chapter Review

299

300

Chapter 6 Branching Statements and Logical Operators

f. chis a lowercase letter or an uppercase letter. (Assume, as is true for ASCII,
that lowercase letters are coded sequentially and that uppercase letters are
coded sequentially but that there is a gap in the code between uppercase and
lowercase.)

In English, the statement “I will not not speak” means the same as “I will speak.” In
C++,1s ! 1x the same as x?

Construct a conditional expression that is equal to the absolute value of a variable.
That is, if a variable x is positive, the value of the expression is just x, but if x is neg-
ative, the value of the expression is -x, which is positive.

Rewrite the following fragment using switch:

if (ch == 'A")
a_grade++;

else if (ch == 'B')
b_grade++;

else if (ch == 'C")
c_grade++;

else if (ch == 'D")
d_grade++;

else
f_grade++;

In Listing 6.10, what advantage would there be in using character labels, such as a
and c, instead of numbers for the menu choices and switch cases? (Hint: Think
about what happens if the user types g in either case and what happens if the user
types 5 in either case.)

Consider the following code fragment:

int line = 0;

char ch;

while (cin.get(ch))

{

if (ch == 'Q'")
break;

if (ch != '"\n'")
continue;

line++;

Rewrite this code without using break or continue.

Programming Exercises

Programming Exercises

1. Write a program that reads keyboard input to the @ symbol and that echoes the

input except for digits, converting each uppercase character to lowercase, and vice
versa. (Don’t forget the cctype family.)

Write a program that reads up to 10 donation values into an array of double. (Or, if
you prefer, use an array template object.) The program should terminate input on
non-numeric input. It should report the average of the numbers and also report
how many numbers in the array are larger than the average.

Write a precursor to a menu-driven program. The program should display a menu
offering four choices, each labeled with a letter. If the user responds with a letter
other than one of the four valid choices, the program should prompt the user to
enter a valid response until the user complies. Then the program should use a
switch to select a simple action based on the user’s selection. A program run could
look something like this:

Please enter one of the following choices:

c) carnivore p) pianist
t) tree g) game
f

Please enter a ¢, p, t, or g: q
Please enter a ¢, p, t, or g: t
A maple is a tree.

When you join the Benevolent Order of Programmers, you can be known at BOP
meetings by your real name, your job title, or your secret BOP name. Write a pro-
gram that can list members by real name, by job title, by secret name, or by a mem-
ber’s preference. Base the program on the following structure:
// Benevolent Order of Programmers name structure
struct bop {

char fullname[strsize]; // real name

char title[strsize]; // job title
char bopname [strsize]; // secret BOP name
int preference; // 0 = fullname, 1 = title, 2 = bopname

}i

In the program, create a small array of such structures and initialize it to suitable
values. Have the program run a loop that lets the user select from different alterna-
tives:

a. display by name b. display by title

c. display by bopname d. display by preference

g. quit

301

302 Chapter 6 Branching Statements and Logical Operators

Note that “display by preference” does not mean display the preference member; it
means display the member corresponding to the preference number. For instance, if
preference is 1, choice d would display the programmer’s job title. A sample run
may look something like the following:

Benevolent Order of Programmers Report

a. display by name b. display by title

c. display by bopname d. display by preference

g. quit

Enter your choice: a

Wimp Macho

Raki Rhodes

Celia Laiter

Hoppy Hipman

Pat Hand

Next choice: d

Wimp Macho

Junior Programmer

MIPS

Analyst Trainee

LOOPY

Next choice: q

Bye!

5. The Kingdom of Neutronia, where the unit of currency is the tvarp, has the fol-
lowing income tax code:

First 5,000 tvarps: 0% tax

Next 10,000 tvarps: 10% tax
Next 20,000 tvarps: 15% tax
Tvarps after 35,000: 20% tax

For example, someone earning 38,000 tvarps would owe 5,000 X 0.00 + 10,000 x
0.10 + 20,000 x 0.15 + 3,000 X 0.20, or 4,600 tvarps. Write a program that uses a
loop to solicit incomes and to report tax owed. The loop should terminate when
the user enters a negative number or non-numeric input.

6. Put together a program that keeps track of monetary contributions to the Society
for the Preservation of Rightful Influence. It should ask the user to enter the num-
ber of contributors and then solicit the user to enter the name and contribution of
each contributor. The information should be stored in a dynamically allocated array
of structures. Each structure should have two members: a character array (or else a
string object) to store the name and a double member to hold the amount of the
contribution. After reading all the data, the program should display the names and
amounts donated for all donors who contributed $10,000 or more. This list should

Programming Exercises

be headed by the label Grand Patrons. After that, the program should list the
remaining donors. That list should be headed Patrons. If there are no donors in one
of the categories, the program should print the word “none.” Aside from displaying
two categories, the program need do no sorting.

Write a program that reads input a word at a time until a lone q is entered. The
program should then report the number of words that began with vowels, the num-
ber that began with consonants, and the number that fit neither of those categories.
One approach is to use isalpha () to discriminate between words beginning with
letters and those that don’t and then use an if or switch statement to further iden-
tify those passing the isalpha () test that begin with vowels. A sample run might
look like this:

Enter words (g to quit):

The 12 awesome oxen ambled

quietly across 15 meters of lawn. gq

5 words beginning with vowels

4 words beginning with consonants

2 others

Write a program that opens a text file, reads it character-by-character to the end of
the file, and reports the number of characters in the file.

Do Programming Exercise 6 but modify it to get information from a file. The first
item in the file should be the number of contributors, and the rest of the file should
consist of pairs of lines, with the first line of each pair being a contributor’s name
and the second line being a contribution. That is, the file should look like this:

4

Sam Stone

2000

Freida Flass

100500

Tammy Tubbs

5000

Rich Raptor

55000

303

This page intentionally left blank

v

Functions: C++’s
Programming Modules

In this chapter you’ll learn about the following:

= Function basics

= Function prototypes

= Passing function arguments by value

= Designing functions to process arrays

= Using const pointer parameters

= Designing functions to process text strings

= Designing functions to process structures

= Designing functions to process objects of the string class
= Functions that call themselves (recursion)

= Pointers to functions

Fun is where you find it. Look closely, and you can find it in functions. C++ comes
with a large library of useful functions (the standard ANSI C library plus several C++
classes), but real programming pleasure comes with writing your own functions. (On the
other hand, real programming productivity can come with learning more about what you
can do with the STL and the BOOST C++ libraries.) This chapter and Chapter 8,
“Adventures in Functions,” examine how to define functions, convey information to
them, and retrieve information from them. After reviewing how functions work, this
chapter concentrates on how to use functions in conjunction with arrays, strings, and
structures. Finally, it touches on recursion and pointers to functions. If you’ve paid your C
dues, you’ll find much of this chapter familiar. But don’t be lulled into a false sense of
expertise. C++ has made several additions to what C functions can do, and Chapter 8
deals primarily with those. Meanwhile, let’s attend to the fundamentals.

306

Chapter 7 Functions: C++’s Programming Modules

Function Review

Let’s review what you’ve already seen about functions. To use a C++ function, you must
do the following:

= Provide a function definition
= Provide a function prototype

= Call the function

If you're using a library function, the function has already been defined and compiled
for you. Also you can and should use a standard library header file to provide the proto-
type. All that’s left to do is call the function properly. The examples so far in this book
have done that several times. For example, the standard C library includes the strlen()
function for finding the length of the string. The associated standard header file cstring
contains the function prototype for strlen() and several other string-related functions.
This advance work allows you to use the strlen() function in programs without further
worries.

But when you create your own functions, you have to handle all three aspects—defin-
ing, prototyping, and calling—ryourself. Listing 7.1 shows these steps in a short example.

Listing 7.1 calling.cpp

// calling.cpp -- defining, prototyping, and calling a function
#include <iostreams>

void simple(); // function prototype

int main()

{

using namespace std;
cout << "main() will call the simple() function:\n";

simple () ; // function call

cout << "main() is finished with the simple() function.\n";
// cin.get();
return 0;

// function definition
void simple ()
using namespace std;
cout << "I'm but a simple function.\n";

Function Review

Here’s the output of the program in Listing 7.1:
main() will call the simple() function:

I'm but a simple function.
main() is finished with the simple() function.

Program execution in main () halts as control transfers to the simple () function.
When simple () finishes, program execution in main () resumes. This example places a
using directive inside each function definition because each function uses cout. Alterna-
tively, the program could have a single using directive placed above the function defini-
tions or otherwise use std: : cout.

Let’s take a more detailed look at these steps now.

Defining a Function

You can group functions into two categories: those that don’t have return values and
those that do. Functions without return values are termed type void functions and have
the following general form:

void functionName (parameterList

{

statement (s)
return; // optional

Here parameterList specifies the types and number of arguments (parameters) passed
to the function. This chapter more fully investigates this list later. The optional return
statement marks the end of the function. Otherwise, the function terminates at the clos-
ing brace. Type void functions correspond to Pascal procedures, FORTRAN subroutines,
and modern BASIC subprogram procedures. Typically, you use a void function to per-
form some sort of action. For example, a function to print Cheers! a given number (n) of
times could look like this:

void cheers(int n) // no return value

{

for (int 1 = 0; 1 < n; 1i++)
std::cout << "Cheers! ";
std::cout << std::endl;

The int n parameter list means that cheers () expects to have an int value passed to
it as an argument when you call this function.

A function with a return value produces a value that it returns to the function that
called it. In other words, if the function returns the square root of 9.0 (sqrt (9.0)), the

307

308

Chapter 7 Functions: C++’s Programming Modules

function call has the value 3.0. Such a function is declared as having the same type as the
value it returns. Here is the general form:

typeName functionName (parameterList)

{

statements
return value; // value is type cast to type typeName

Functions with return values require that you use a return statement so that the value
is returned to the calling function. The value itself can be a constant, a variable, or a more
general expression. The only requirement is that the expression reduces to a value that
has, or is convertible to, the typename type. (If the declared return type is, say, double, and
the function returns an int expression, the int value is type cast to type double.) The
function then returns the final value to the function that called it. C++ does place a
restriction on what types you can use for a return value: The return value cannot be an
array. Everything else is possible—integers, floating-point numbers, pointers, and even
structures and objects! (Interestingly, even though a C++ function can’t return an array
directly, it can return an array that’s part of a structure or object.)

As a programmer, you don’t need to know how a function returns a value, but know-
ing the method might clarify the concept for you. (Also it gives you something to talk
about with your friends and family.) Typically, a function returns a value by copying the
return value to a specified CPU register or memory location. Then the calling program
examines that location. Both the returning function and the calling function have to
agree on the type of data at that location. The function prototype tells the calling program
what to expect, and the function definition tells the called program what to return (see
Figure 7.1). Providing the same information in the prototype as in the definition might
seem like extra work, but it makes good sense. Certainly, if you want a courier to pick up
something from your desk at the office, you enhance the odds of the task being done
right if you provide a description of what you want both to the courier and to someone
at the office.

A function terminates after executing a return statement. If a function has more than
one return statement—for example, as alternatives to different if else selections—the
function terminates after it executes the first return statement it reaches. For instance, in
the following example, the else isn’t needed, but it does help the casual reader under-
stand the intent:

int bigger(int a, int b)
{
if (a > b)
return a; // if a > b, function terminates here
else
return b; // otherwise, function terminates here

Function Review

ééﬂble cube(double x); // function prototype

iﬁ{ main()

double q = cube(1.2); // function call
}
double cube(double x) // function definition
——return x * x * Xx;
}
cube () calculates main () looks here
return value and for the return value

-—

places it here; and assigns it to q;;

functionheader — T cube() prototype

tells cube () to use tells main() to

atype double value return value expect type double
location

Figure 7.1 A typical return value mechanism.

(Usually, having multiple return statements in a function is considered potentially con-
fusing, and some compilers might issue a warning. However, the code here is simple
enough to understand.)

Functions with return values are much like functions in Pascal, FORTRAN, and
BASIC. They return a value to the calling program, which can then assign that value to a
variable, display the value, or otherwise use it. Here’s a simple example that returns the
cube of a type double value:

double cube (double x) // x times x times x

{
}

For example, the function call cube (1.2) returns the value 1.728. Note that this

return x * x * x; // a type double value

return statement uses an expression. The function computes the value of the expression
(1.728, in this case) and returns the value.

Prototyping and Calling a Function

By now you are familiar with making function calls, but you may be less comfortable
with function prototyping because that’s often been hidden in the include files. Listing
7.2 shows the cheers () and cube () functions used in a program; notice the function
prototypes.

309

310

Chapter 7 Functions: C++’s Programming Modules

Listing 7.2 protos.cpp

// protos.cpp -- using prototypes and function calls
#include <iostreams>

void cheers (int) ; // prototype: no return value
double cube (double x); // prototype: returns a double
int main ()

{

using namespace std;

cheers (5) ; // function call

cout << "Give me a number: ";

double side;

cin >> side;

double volume = cube (side) ; // function call

cout << "A " << side <<"-foot cube has a volume of ";
cout << volume << " cubic feet.\n";

cheers (cube (2)) ; // prototype protection at work
return 0;

void cheers(int n)
using namespace std;
for (int i = 0; 1 < n; 1i++)
cout << "Cheers! ";
cout << endl;

double cube (double x)

{

return x * x * x;

The program in Listing 7.2 places a using directive in only those functions that use
the members of the std namespace. Here’s a sample run:
Cheers! Cheers! Cheers! Cheers! Cheers!
Give me a number: 5

A 5-foot cube has a volume of 125 cubic feet.
Cheers! Cheers! Cheers! Cheers! Cheers! Cheers! Cheers! Cheers!

Note that main () calls the type void function cheers () by using the function name
and arguments followed by a semicolon: cheers (5) ;. This is an example of a function call
statement. But because cube () has a return value, main () can use it as part of an assign-
ment statement:

double volume = cube(side);

Function Review

But I said earlier that you should concentrate on the prototypes. What should you
know about prototypes? First, you should understand why C++ requires prototypes.
Then because C++ requires prototypes, you should know the proper syntax. Finally, you
should appreciate what the prototype does for you. Let’s look at these points in turn,
using Listing 7.2 as a basis for discussion.

Why Prototypes?

A prototype describes the function interface to the compiler. That s, it tells the compiler
what type of return value, if any, the function has, and it tells the compiler the number
and type of function arguments. Consider how the prototype affects this function call
from Listing 7.2:

double volume = cube(side) ;

First, the prototype tells the compiler that cube () should have one type double argu-
ment. If the program fails to provide the argument, prototyping allows the compiler to
catch the error. Second, when the cube () function finishes its calculation, it places its
return value at some specified location—perhaps in a CPU register, perhaps in memory.
Then the calling function, main () in this case, retrieves the value from that location.
Because the prototype states that cube () is type double, the compiler knows how many
bytes to retrieve and how to interpret them. Without that information, the compiler
could only guess, and that is something compilers won’t do.

Still, you might wonder, why does the compiler need a prototype? Can't it just look
further in the file and see how the functions are defined? One problem with that
approach is that it is not very efficient. The compiler would have to put compiling
main() on hold while searching the rest of the file. An even more serious problem is the
fact that the function might not even be in the file. C++ allows you to spread a program
over several files, which you can compile independently and then combine later. In such a
case, the compiler might not have access to the function code when it’s compiling
main ().The same is true if the function is part of a library. The only way to avoid using a
function prototype is to place the function definition before its first use. That is not always
possible. Also the C++ programming style is to put main () first because it generally pro-
vides the structure for the whole program.

Prototype Syntax

A function prototype is a statement, so it must have a terminating semicolon. The simplest
way to get a prototype is to copy the function header from the function definition and
add a semicolon. That’s what the program in Listing 7.2 does for cube () :

double cube(double x); // add ; to header to get prototype

311

312

Chapter 7 Functions: C++’s Programming Modules

However, the function prototype does not require that you provide names for the vari-
ables; a list of types is enough. The program in Listing 7.2 prototypes cheers () by using
only the argument type:

void cheers(int); // okay to drop variable names in prototype

In general, you can either include or exclude variable names in the argument lists for
prototypes. The variable names in the prototype just act as placeholders, so if you do use
names, they don’t have to match the names in the function definition.

C++ Versus ANSI C Prototyping

ANSI C borrowed prototyping from C++, but the two languages do have some differences.
The most important is that ANSI C, to preserve compatibility with classic C, made prototyp-
ing optional, whereas C++ makes prototyping mandatory. For example, consider the follow-
ing function declaration:

void say hi();

In C++, leaving the parentheses empty is the same as using the keyword void within the
parentheses. It means the function has no arguments. In ANSI C, leaving the parentheses
empty means that you are declining to state what the arguments are. That is, it means
you're forgoing prototyping the argument list. The C++ equivalent for not identifying the argu-
ment list is to use an ellipsis:

void say bye(...); // C++ abdication of responsibility

Normally this use of an ellipsis is needed only for interfacing with C functions having a vari-
able number of arguments, such as printf ().

What Prototypes Do for You
You've seen that prototypes help the compiler. But what do they do for you? They greatly
reduce the chances of program errors. In particular, prototypes ensure the following:

= The compiler correctly handles the function return value.
= The compiler checks that you use the correct number of function arguments.

s The compiler checks that you use the correct type of arguments. If you don't, it
converts the arguments to the correct type, if possible.

We’ve already discussed how to correctly handle the return value. Let’s look now at
what happens when you use the wrong number of arguments. For example, suppose you
make the following call:

double z = cube();
A compiler that doesn’t use function prototyping lets this go by. When the function is

called, it looks where the call to cube () should have placed a number and uses whatever
value happens to be there. This is how C worked before ANSI C borrowed prototyping

Function Arguments and Passing by Value 313

from C++. Because prototyping is optional for ANSI C, this is how some C programs still
work. But in C++ prototyping is not optional, so you are guaranteed protection from that
sort of error.

Next, suppose you provide an argument but it is the wrong type. In C, this could create
weird errors. For example, if a function expects a type int value (assume that’s 16 bits) and
you pass a double (assume that’s 64 bits), the function looks at just the first 16 bits of the
64 and tries to interpret them as an int value. However, C++ automatically converts the
value you pass to the type specified in the prototype, provided that both are arithmetic
types. For example, Listing 7.2 manages to get two type mismatches in one statement:

cheers (cube (2)) ;

First, the program passes the int value of 2 to cube (), which expects type double.The
compiler, noting that the cube () prototype specifies a type double argument, converts 2
to 2.0, a type double value.Then cube () returns a type double value (8.0) to be used as
an argument to cheers (). Again, the compiler checks the prototypes and notes that
cheers () requires an int. It converts the return value to the integer 8. In general, proto-
typing produces automatic type casts to the expected types. (Function overloading, dis-
cussed in Chapter 8, can create ambiguous situations, however, that prevent some
automatic type casts.)

Automatic type conversion doesn’t head off all possible errors. For example, if you pass
a value of 8.33E27 to a function that expects an int, such a large value cannot be con-
verted correctly to a mere int. Some compilers warn you of possible data loss when there
is an automatic conversion from a larger type to a smaller.

Also prototyping results in type conversion only when it makes sense. It won't, for
example, convert an integer to a structure or pointer.

Prototyping takes place during compile time and is termed static type checking. Static
type checking, as you’ve just seen, catches many errors that are much more difficult to
catch during runtime.

Function Arguments and Passing by Value

It’s time to take a closer look at function arguments. C++ normally passes arguments by
value. That means the numeric value of the argument is passed to the function, where it is
assigned to a new variable. For example, Listing 7.2 has this function call:

double volume = cube(side) ;

Here side is a variable that, in the sample run, had the value 5.The function header for
cube (), recall, was this:
double cube (double x)

When this function is called, it creates a new type double variable called x and initial-

izes it with the value 5.This insulates data in main () from actions that take place in
cube () because cube () works with a copy of side rather than with the original data.

314

Chapter 7 Functions: C++’s Programming Modules

You'll see an example of this protection soon. A variable that’s used to receive passed val-
ues is called a formal argument or formal parameter. The value passed to the function is called
the actual argument or actual parameter. To simplify matters a bit, the C++ Standard uses the
word argument by itself to denote an actual argument or parameter and the word parameter
by itself to denote a formal argument or parameter. Using this terminology, argument
passing initializes the parameter to the argument (see Figure 7.2).

ca . original
double cube(double x); creates variable—> | 5 | "
int main() called side and
{ > assigns it side
L the value 5
double side = 5; ——M
double volume = cube(side); — passes the value 5
} to the cube () function
double cube(double x) .
{ creates variable— | 5 copied
}r‘etur‘n X TX TS called x and value
X

assigns it
passed value 5

Figure 7.2 Passing by value.

Variables, including parameters, declared within a function are private to the function.
When a function is called, the computer allocates the memory needed for these variables.
When the function terminates, the computer frees the memory that was used for those
variables. (Some C++ literature refers to this allocating and freeing of memory as creating
and destroying variables. That does make it sound much more exciting.) Such variables are
called local variables because they are localized to the function. As mentioned previously,
this helps preserve data integrity. It also means that if you declare a variable called x in
main () and another variable called x in some other function, these are two distinct, unre-
lated variables, much as the Albany in California is distinct from the Albany in New York
(see Figure 7.3). Such variables are also termed automatic variables because they are allo-
cated and deallocated automatically during program execution.

Multiple Arguments

A function can have more than one argument. In the function call, you just separate the
arguments with commas:

n chars('R', 25);

This passes two arguments to the function n_chars (), which will be defined shortly.

Function Arguments and Passing by Value 315

void cheers(int n);

int main()
{
int n = 20;
int i = 1000;
int y = 10;
cheers(y);
}
I
void cheers(int n)
{ I
for (int 1 = 0; i <n; i++)
cout << "Cheers!";
cout << "\n";
}
Each function has its
own variables with
their own values.
20 1000 10 10 0
n i y n i
variables in main () variables in cheers ()

Figure 7.3 Local variables.

Similarly, when you define the function, you use a comma-separated list of parameter
declarations in the function header:

void n_chars(char ¢, int n) // two arguments

This function header states that the function n_chars () takes one type char argument
and one type int argument. The parameters ¢ and n are initialized with the values passed
to the function. If a function has two parameters of the same type, you have to give the

type of each parameter separately. You can’t combine declarations the way you can when
you declare regular variables:

void fifi(float a, float b) // declare each variable separately
void fufu(float a, b) // NOT acceptable

As with other functions, you just add a semicolon to get a prototype:
void n chars(char ¢, int n); // prototype, style 1

As with single arguments, you don’t have to use the same variable names in the proto-
type as in the definition, and you can omit the variable names in the prototype:

void n chars(char, int); // prototype, style 2

316 Chapter 7 Functions: C++’s Programming Modules

However, providing variable names can make the prototype more understandable, par-
ticularly if two parameters are the same type. Then the names can remind you which
argument is which:

double melon density(double weight, double volume) ;

Listing 7.3 shows an example of a function with two arguments. It also illustrates how
changing the value of a formal parameter in a function has no effect on the data in the
calling program.

Listing 7.3 twoarg.cpp

// twoarg.cpp -- a function with 2 arguments
#include <iostream>
using namespace std;
void n_chars(char, int);
int main()
{
int times;
char ch;

cout << "Enter a character: ";
cin >> ch;
while (ch != 'q') // q to quit
{
cout << "Enter an integer: ";
cin >> times;
n chars(ch, times); // function with two arguments
cout << "\nEnter another character or press the"
" g-key to quit: ";
cin >> ch;
}
cout << "The value of times is " << times << ".\n";
cout << "Bye\n";
return 0;

void n chars(char ¢, int n) // displays c n times

{
while (n-- > 0) // continue until n reaches 0

cout << ¢;

The program in Listing 7.3 illustrates placing a using directive above the function def-
initions rather than within the functions. Here is a sample run:

Enter a character: W
Enter an integer: 50

Function Arguments and Passing by Value

WWWWWNWNWHWWWWNWNWNWNWHWWNWNWNWNWHWWNWNWNANWRWEVWW
Enter another character or press the g-key to quit: a
Enter an integer: 20

aaaaaaaaaaaaaaaaaaaa

Enter another character or press the g-key to quit: gq
The value of times is 20.

Bye

Program Notes
The main () function in Listing 7.3 uses a while loop to provide repeated input (and to
keep your loop skills fresh). Note that it uses cin >> ch rather than cin.get (ch) or
ch = cin.get () to read a character. There’s a good reason for this. Recall that the two
cin.get () functions read all input characters, including spaces and newlines, whereas cin
>> skips spaces and newlines. When you respond to the program prompt, you have to press
Enter at the end of each line, thus generating a newline character. The cin >> ch
approach conveniently skips over these newlines, but the cin.get () siblings read the
newline following each number entered as the next character to display. You can program
around this nuisance, but it’s simpler to use cin as the program in Listing 7.3 does.

The n_chars () function takes two arguments: a character ¢ and an integer n. It then
uses a loop to display the character the number of times the integer specifies:

while (n-- > 0) // continue until n reaches 0

cout << c;

Notice that the program keeps count by decrementing the n variable, where n is the
formal parameter from the argument list. This variable is assigned the value of the times
variable in main (). The while loop then decreases n to 0, but, as the sample run demon-
strates, changing the value of n has no effect on times. Even if you use the name n instead
of times in main (), the value of n in main () is unaffected by changes in the value of n in

n_chars().

Another Two-Argument Function

Let’s create a more ambitious function—one that performs a nontrivial calculation.
Also the function illustrates the use of local variables other than the function’s formal
arguments.

Many states in the United States now sponsor a lottery with some form of Lotto game.
Lotto lets you pick a certain number of choices from a card. For example, you might get
to pick six numbers from a card having 51 numbers. Then the Lotto managers pick six
numbers at random. If your choice exactly matches theirs, you win a few million dollars
or so. Our function will calculate the probability that you have a winning pick. (Yes, a
function that successfully predicts the winning picks themselves would be more useful, but
C++, although powerful, has yet to implement psychic faculties.)

317

318

Chapter 7 Functions: C++’s Programming Modules

First, you need a formula. If you have to pick six values out of 51, mathematics says that
you have one chance in R of winning, where the following formula gives R:

51 x50 x 49 x 48 x 47 x 46

6xb5x4x3x2x1

For six choices, the denominator is the product of the first six integers, or 6 factorial.
The numerator is also the product of six consecutive numbers, this time starting with 51
and going down. More generally, if you pick picks values out of numbers numbers, the
denominator is picks factorial and the numerator is the product of picks integers,
starting with the value numbers and working down.You can use a for loop to make
that calculation:
long double result = 1.0;
for (n = numbers, p = picks; p > 0; n--, p--)

result = result * n / p ;

Rather than multiply all the numerator terms first, the loop begins by multiplying 1.0
by the first numerator term and then dividing by the first denominator term. Then in the
next cycle, the loop multiplies and divides by the second numerator and denominator
terms. This keeps the running product smaller than if you did all the multiplication first.
For example, compare

(10 * 9) / (2 * 1)
with
(10 / 2) * (9 /1)

The first evaluates to 90 / 2 and then to 45, whereas the second evaluates to 5 X 9 and
then to 45. Both give the same answer, but the first method produces a larger intermedi-
ate value (90) than does the second. The more factors you have, the bigger the difference
gets. For large numbers, this strategy of alternating multiplication with division can keep
the calculation from overflowing the maximum possible floating-point value.

Listing 7.4 incorporates this formula into a probability () function. Because the
number of picks and the total number of choices should be positive values, the program
uses the unsigned int type (unsigned, for short) for those quantities. Multiplying sev-
eral integers can produce pretty large results, so lotto.cpp uses the long double type
for the function’s return value. Also terms such as 49 / 6 produce a truncation error for

integer types.

Note

Some C++ implementations don’t support type 1ong double. If your implementation falls
into that category, try ordinary double instead.

Function Arguments and Passing by Value

Listing 7.4 lotto.cpp

// lotto.cpp -- probability of winning
#include <iostreams>
// Note: some implementations require double instead of long double
long double probability(unsigned numbers, unsigned picks);
int main()
{
using namespace std;
double total, choices;
cout << "Enter the total number of choices on the game card and\n"
"the number of picks allowed:\n";
while ((cin >> total >> choices) && choices <= total)
{
cout << "You have one chance in ";
cout << probability(total, choices); // compute the odds
cout << " of winning.\n";
cout << "Next two numbers (g to quit): ";
}
cout << "bye\n";
return 0;

// the following function calculates the probability of picking picks
// numbers correctly from numbers choices
long double probability(unsigned numbers, unsigned picks)
{
long double result = 1.0; // here come some local variables
long double n;
unsigned p;

for (n = numbers, p = picks; p > 0; n--, p--)
result = result * n / p ;
return result;

Here’s a sample run of the program in Listing 7.4:

Enter the total number of choices on the game card and
the number of picks allowed:

49 6

You have one chance in 1.39838e+007 of winning.

Next two numbers (g to quit): 51 6

You have one chance in 1.80095e+007 of winning.

Next two numbers (g to quit): 38 6

You have one chance in 2.76068e+006 of winning.

Next two numbers (g to quit): gq

bye

319

320

Chapter 7 Functions: C++’s Programming Modules

Notice that increasing the number of choices on the game card greatly increases the
odds against winning.

Program Notes

The probability () function in Listing 7.4 illustrates two kinds of local variables you can
have in a function. First, there are the formal parameters (numbers and picks), which are
declared in the function header before the opening brace. Then come the other local vari-
ables (result,n, and p). They are declared in between the braces bounding the function
definition. The main difference between the formal parameters and the other local vari-
ables is that the formal parameters get their values from the function that calls
probability (), whereas the other variables get values from within the function.

Functions and Arrays

So far the sample functions in this book have been simple, using only the basic types for
arguments and return values. But functions can be the key to handling more involved
types, such as arrays and structures. Let’s take a look now at how arrays and functions get
along with each other.

Suppose you use an array to keep track of how many cookies each person has eaten at
a family picnic. (Each array index corresponds to a person, and the value of the element
corresponds to the number of cookies that person has eaten.) Now you want the total.
That’s easy to find; you just use a loop to add all the array elements. But adding array ele-
ments is such a common task that it makes sense to design a function to do the job.Then
you won'’t have to write a new loop every time you have to sum an array.

Let’s consider what the function interface involves. Because the function calculates a
sum, it should return the answer. If you keep your cookies intact, you can use a function
with a type int return value. So that the function knows what array to sum, you want to
pass the array name as an argument. And to make the function general so that it is not
restricted to an array of a particular size, you pass the size of the array. The only new
ingredient here is that you have to declare that one of the formal arguments is an array
name. Let’s see what that and the rest of the function header look like:

int sum arr(int arr[], int n) // arr = array name, n = size

This looks plausible. The brackets seem to indicate that arr is an array, and the fact that
the brackets are empty seems to indicate that you can use the function with an array of
any size. But things are not always as they seem: arr is not really an array; it’s a pointer!
The good news is that you can write the rest of the function just as if arr were an array.
First, let’s use an example to check that this approach works, and then let’s look into why
it works.

Listing 7.5 illustrates using a pointer as if it were an array name. The program initializes
the array to some values and uses the sum_arr () function to calculate the sum. Note that
the sum_arr () function uses arr as if it were an array name.

Functions and Arrays

Listing 7.5 arrfunl.cpp

// arrfunl.cpp -- functions with an array argument
#include <iostreams>
const int ArSize = 8;
int sum arr(int arr([], int n); // prototype
int main()
{

using namespace std;

int cookies[ArSize] = {1,2,4,8,16,32,64,128};
// some systems require preceding int with static to
// enable array initialization

int sum = sum_arr(cookies, ArSize);
cout << "Total cookies eaten: " << sum << "\n";
return 0;

// return the sum of an integer array
int sum arr(int arr(], int n)

{

int total = 0;

for (int 1 = 0; 1 < n; 1i++)
total = total + arrl[i];
return total;

Here is the output of the program in Listing 7.5:

Total cookies eaten: 255

As you can see, the program works. Now let’s look at why it works.

How Pointers Enable Array-Processing Functions

The key to the program in Listing 7.5 is that C++, like C, in most contexts treats the
name of an array as if it were a pointer. Recall from Chapter 4, “Compound Types,” that
C++ interprets an array name as the address of its first element:

cookies == &cookies[0] // array name is address of first element

(There are a few exceptions to this rule. First, the array declaration uses the array name
to label the storage. Second, applying sizeof to an array name yields the size of the whole
array, in bytes. Third, as mentioned in Chapter 4, applying the address operator & to an
array name returns the address of the whole array; for example, scookies would be the
address of a 32-byte block of memory if int is 4 bytes.)

321

322

Chapter 7 Functions: C++’s Programming Modules

Listing 7.5 makes the following function call:

int sum = sum arr(cookies, ArSize);

Here cookies is the name of an array, hence by C++ rules cookies is the address of
the array’s first element. The function passes an address. Because the array has type int
elements, cookies must be type pointer-to-int, or int *.This suggests that the correct
function header should be this:

int sum arr(int * arr, int n) // arr = array name, n = size

Here int *arr has replaced int arr[].It turns out that both headers are correct
because in C++ the notations int *arr and int arr[] have the identical meaning when
(and only when) used in a function header or function prototype. Both mean that arr is a
pointer-to-int. However, the array notation version (int arr[]) symbolically reminds
you that arr not only points to an int, it points to the first int in an array of ints. This
book uses the array notation when the pointer is to the first element of an array, and it
uses the pointer notation when the pointer is to an isolated value. Remember that the
notations int *arr and int arr[] are not synonymous in any other context. For exam-
ple, you can’t use the notation int tipI[] to declare a pointer in the body of a function.

Given that the variable arr actually is a pointer, the rest of the function makes sense. As
you might recall from the discussion of dynamic arrays in Chapter 4, you can use the
bracket array notation equally well with array names or with pointers to access elements
of an array. Whether arr is a pointer or an array name, the expression arr [3] means the
fourth element of the array. And it probably will do no harm at this point to remind you
of the following two identities:

arr[i] == *(ar + 1) // values in two notations
garr[i] == ar + 1 // addresses in two notations

Remember that adding one to a pointer, including an array name, actually adds a
value equal to the size, in bytes, of the type to which the pointer points. Pointer addition
and array subscription are two equivalent ways of counting elements from the beginning
of an array.

The Implications of Using Arrays as Arguments

Let’s look at the implications of Listing 7.5.The function call sum_arr (cookies,

Arsize) passes the address of the first element of the cookies array and the number of
elements of the array to the sum_arr () function.The sum_arr () function initializes the
cookies address to the pointer variable arr and initializes Arsize to the int variable n.
This means Listing 7.5 doesn’t really pass the array contents to the function. Instead, it tells
the function where the array is (the address), what kind of elements it has (the type), and
how many elements it has (the n variable). (See Figure 7.4.) Armed with this information,
the function then uses the original array. If you pass an ordinary variable, the function
works with a copy. But if you pass an array, the function works with the original. Actually,
this difference doesn’t violate C++’s pass-by-value approach. The sum_arr () function still

Functions and Arrays

passes a value that’s assigned to a new variable. But that value is a single address, not the
contents of an array.

tells the address of the array tells how many

tells the type of array elements to process

|
ST S

int sum_arr(int arr[], int n)

same as *arr, means arr is a pointer

Figure 7.4 Telling a function about an array.

Is the correspondence between array names and pointers a good thing? Indeed, it is.
The design decision to use array addresses as arguments saves the time and memory
needed to copy an entire array. The overhead for using copies can be prohibitive if you’re
working with large arrays. With copies, not only does a program need more computer
memory, but it has to spend time copying large blocks of data. On the other hand, work-
ing with the original data raises the possibility of inadvertent data corruption. That’s a real
problem in classic C, but ANSI C and C++’ const modifier provides a remedy. You’ll
soon see an example. But first, let’s alter Listing 7.5 to illustrate some points about how
array functions operate. Listing 7.6 demonstrates that cookies and arr have the same
value. It also shows how the pointer concept makes the sum_arr function more versatile
than it may have appeared at first. To provide a bit of variety and to show you what it
looks like, the program uses the std: : qualifier instead of the using directive to provide
access to cout and endl.

Listing 7.6 arrfun2.cpp

// arrfun2.cpp -- functions with an array argument
#include <iostream>
const int ArSize = 8;
int sum_arr(int arr[], int n);
// use std:: instead of using directive
int main()
{
int cookies[ArSize] = {1,2,4,8,16,32,64,128};
// some systems require preceding int with static to
// enable array initialization

323

324 Chapter 7 Functions: C++’s Programming Modules

std::cout << cookies << " = array address, ";
// some systems require a type cast: unsigned (cookies)

std::cout << sizeof cookies << " = sizeof cookies\n";

int sum = sum arr(cookies, ArSize);

std::cout << "Total cookies eaten: " << sum << std::endl;

sum = sum_arr (cookies, 3); // a lie

std::cout << "First three eaters ate " << sum << " cookies.\n";
sum = sum_arr (cookies + 4, 4); // another lie

std::cout << "Last four eaters ate " << sum << " cookies.\n";
return 0;

// return the sum of an integer array
int sum arr(int arr[], int n)
int total = 0;
std::cout << arr << " = arr, ";
// some systems require a type cast: unsigned (arr)

std::cout << sizeof arr << " = sizeof arr\n";
for (int 1 = 0; 1 < n; 1i++)

total = total + arrl[i];
return total;

Here’s the output of the program in Listing 7.6:

003EF9FC = array address, 32 = sizeof cookies
003EF9FC = arr, 4 = sizeof arr

Total cookies eaten: 255

003EF9FC = arr, 4 = sizeof arr

First three eaters ate 7 cookies.

003EFAOC = arr, 4 = sizeof arr

Last four eaters ate 240 cookies.

Note that the address values and the array and integer sizes will vary from system to
system. Also some implementations will display the addresses in base 10 notation instead
of in hexadecimal. Others will use hexadecimal digits and the 0x hexadecimal prefix.

Program Notes

Listing 7.6 illustrates some very interesting points about array functions. First, note that
cookies and arr both evaluate to the same address, exactly as claimed. But sizeof
cookies is 32, whereas sizeof arr is only 4.That’s because sizeof cookies is the size
of the whole array, whereas sizeof arr is the size of the pointer variable. (This program
execution takes place on a system that uses 4-byte addresses.) By the way, this is why you

Functions and Arrays

have to explicitly pass the size of the array rather than use sizeof arr in sum arr();the
pointer by itself doesn’t reveal the size of the array.

Because the only way sum_arr () knows the number of elements in the array is
through what you tell it with the second argument, you can lie to the function. For exam-
ple, the second time the program uses the function, it makes this call:

sum = sum_arr (cookies, 3);

By telling the function that cookies has just three elements, you get the function to
calculate the sum of the first three elements.
Why stop there? You can also lie about where the array starts:

sum = sum_arr(cookies + 4, 4);

Because cookies acts as the address of the first element, cookies + 4 acts as the
address of the fifth element. This statement sums the fifth, sixth, seventh, and eighth ele-
ments of the array. Note in the output how the third call to the function assigns a different
address to arr than the first two calls did. And yes, you can use scookies [4] instead of
cookies + 4 as the argument; they both mean the same thing.

Note

To indicate the kind of array and the number of elements to an array-processing function,
you pass the information as two separate arguments:

void fillArray(int arr([], int size); // prototype
Don’t try to pass the array size by using brackets notation:

void fillArray(int arr[size]); // NO -- bad prototype

More Array Function Examples

When you choose to use an array to represent data, you are making a design decision. But
design decisions should go beyond how data is stored; they should also involve how the
data is used. Often you’ll find it profitable to write specific functions to handle specific
data operations. (The profits here include increased program reliability, ease of modifica-
tion, and ease of debugging.) Also when you begin integrating storage properties with
operations when you think about a program, you are taking an important step toward the
OOP mind-set; that, too, might prove profitable in the future.

Let’s examine a simple case. Suppose you want to use an array to keep track of the dol-
lar values of your real estate. (If necessary, suppose you have real estate.) You have to decide
what type to use. Certainly, double is less restrictive in its range than int or long, and it
provides enough significant digits to represent the values precisely. Next, you have to
decide on the number of array elements. (With dynamic arrays created with new, you can
put off that decision, but let’s keep things simple.) Let’s say that you have no more than
five properties, so you can use an array of five doubles.

Now consider the possible operations you might want to execute with the real estate
array. Two very basic ones are reading values into the array and displaying the array

325

326

Chapter 7 Functions: C++’s Programming Modules

contents. Let’s add one more operation to the list: reassessing the value of the properties.
For simplicity, assume that all your properties increase or decrease in value at the same
rate. (Remember, this is a book on C++, not on real estate management.) Next, fit a
function to each operation and then write the code accordingly. We’ll go through the
steps of creating these pieces of a program next. Afterward, we’ll fit them into a complete
example.

Filling the Array

Because a function with an array name argument accesses the original array, not a copy,
you can use a function call to assign values to array elements. One argument to the func-
tion will be the name of the array to be filled. In general, a program might manage more
than one person’s investments, hence more than one array, so you don’t want to build the
array size into the function. Instead, you pass the array size as a second argument, as in the
previous example. Also it’s possible that you might want to quit reading data before filling
the array, so you want to build that feature in to the function. Because you might enter
fewer than the maximum number of elements, it makes sense to have the function return
the actual number of values entered. These considerations suggest the following function

prototype:

int fill array(double ar[], int limit);

The function takes an array name argument and an argument specifying the maximum
number of items to be read, and the function returns the actual number of items read. For
example, if you use this function with an array of five elements, you pass 5 as the second
argument. If you then enter only three values, the function returns 3.

You can use a loop to read successive values into the array, but how can you terminate
the loop early? One way is to use a special value to indicate the end of input. Because no
property should have a negative value, you can use a negative number to indicate the end
of input. Also the function should do something about bad input, such as terminating fur-
ther input. Given these considerations, you can code the function as follows:

int fill array(double ar[], int limit)
{
using namespace std;
double temp;
int 1i;
for (i = 0; 1 < limit; i++)
{
cout << "Enter value #" << (1 + 1) << ": ";
cin >> temp;
if (!cin) // bad input
{
cin.clear();
while (cin.get() != '\n')
continue;
cout << "Bad input; input process terminated.\n";

Functions and Arrays

break;

}

else if (temp < 0) // signal to terminate
break;

ar[i] = temp;

}

return i;

Note that this code includes a prompt to the user. If the user enters a non-negative
value, the value is assigned to the array. Otherwise, the loop terminates. If the user enters
only valid values, the loop terminates after it reads 1imit values. The last thing the loop
does is increment i, so after the loop terminates, i is one greater than the last array index,
hence it’s equal to the number of filled elements. The function then returns that value.

Showing the Array and Protecting It with const

Building a function to display the array contents is simple.You pass the name of the array
and the number of filled elements to the function, which then uses a loop to display each
element. But there is another consideration—guaranteeing that the display function
doesn’t alter the original array. Unless the purpose of a function is to alter data passed to it,
you should safeguard it from doing so. That protection comes automatically with ordinary
arguments because C++ passes them by value, and the function works with a copy. But
functions that use an array work with the original. After all, that’s why the £i11 array ()
function is able to do its job.To keep a function from accidentally altering the contents of
an array argument, you can use the keyword const (discussed in Chapter 3, “Dealing with
Data”) when you declare the formal argument:

void show_array(const double ar([], int n);

The declaration states that the pointer ar points to constant data. This means that you
can’t use ar to change the data. That is, you can use a value such as ar [0], but you can’t
change that value. Note that this doesn’t mean that the original array needs be constant; it
just means that you can’t use ar in the show_array () function to change the data. Thus,
show_array () treats the array as read-only data. Suppose you accidentally violate this
restriction by doing something like the following in the show_array () function:

ar[0] += 10;

In this case, the compiler will put a stop to your wrongful ways. Borland C++, for
example, gives an error message like this (edited slightly):
Cannot modify a const object in function

show_array(const double *,int)

Other compilers may choose to express their displeasure in difterent words.

327

328

Chapter 7 Functions: C++’s Programming Modules

The message reminds you that C++ interprets the declaration const double arl[] to
mean const double *ar.Thus, the declaration really says that ar points to a constant
value. We’ll discuss this in detail when we finish with the current example. Meanwhile,
here is the code for the show_array () function:

void show_array(const double ar[], int n)

{

using namespace std;
for (int 1 = 0; 1 < n; i++)
cout << "Property #" << (i + 1) << ": $";

cout << ar[i] << endl;

Modifying the Array

The third operation for the array in this example is multiplying each element by the same
revaluation factor.You need to pass three arguments to the function: the factor, the array,
and the number of elements. No return value is needed, so the function can look like this:

void revalue (double r, double ar[], int n)

for (int 1 = 0; 1 < n; i++)

ar[i] *= r;

Because this function is supposed to alter the array values, you don’t use const when
you declare ar.

Putting the Pieces Together

Now that you’ve defined a data type in terms of how it’s stored (an array) and how it’s
used (three functions), you can put together a program that uses the design. Because
you’ve already built all the array-handling tools, you've greatly simplified programming
main ().The program does check to see if the user responds to the prompt for a revalua-
tion factor with a number. In this case, rather than stopping if the user fails to comply, the
program uses a loop to ask the user to do the right thing. Most of the remaining program-
ming work consists of having main () call the functions you’ve just developed. Listing 7.7
shows the result. It places a using directive in just those functions that use the iostream
facilities.

Listing 7.7 arrfun3.cpp

// arrfun3.cpp -- array functions and const
#include <iostream>
const int Max = 5;

Functions and Arrays

// function prototypes

int fill array(double ar([], int limit);

void show_array(const double ar[], int n); // don't change data
void revalue(double r, double ar[], int n);

int main()

{

using namespace std;
double properties [Max] ;

int size = fill array(properties, Max);
show_array (properties, size);
if (size > 0)
cout << "Enter revaluation factor: ";
double factor;
while (! (cin >> factor)) // bad input
cin.clear();
while (cin.get() != '\n')
continue;
cout << "Bad input; Please enter a number: ";
revalue (factor, properties, size);
show_array (properties, size);
cout << "Done.\n";
cin.get () ;
cin.get () ;
return 0;

int fill array(double ar[], int limit)

using namespace std;
double temp;
int i;
for (1 = 0; 1 < limit; i++)
{
cout << "Enter value #" << (1 + 1) << ": ";
cin >> temp;
if (!cin) // bad input
{
cin.clear();
while (cin.get() != '\n')
continue;
cout << "Bad input; input process terminated.\n";

329

330 Chapter 7 Functions: C++’s Programming Modules

break;
1
else if (temp < 0) // signal to terminate
break;
ar[i] = temp;
1
return i;

// the following function can use, but not alter,
// the array whose address is ar
void show_array(const double ar[], int n)

{
using namespace std;
for (int i = 0; 1 < n; i++)
{
cout << "Property #" << (i + 1) << ": $";
cout << ar[i] << endl;
1
}

// multiplies each element of ar([] by r
void revalue (double r, double ar[], int n)
{
for (int 1 = 0; 1 < n; i++)
r;

ar[i] *=

Here are two sample runs of the program in Listing 7.7:

Enter value #1: 100000
Enter value #2: 80000
Enter value #3: 222000
Enter value #4: 240000
Enter value #5: 118000
Property #1: $100000
Property #2: $80000
Property #3: $222000
Property #4: $240000
Property #5: $118000
Enter revaluation factor: 0.8
Property #1: $80000
Property #2: $64000
Property #3: $177600
Property #4: $192000
Property #5: $94400
Done.

Functions and Arrays

Enter value #1: 200000
Enter value #2: 84000
Enter value #3: 160000
Enter value #4: -2
Property #1: $200000
Property #2: $84000
Property #3: $160000
Enter reevaluation factor: 1.20
Property #1: $240000
Property #2: $100800
Property #3: $192000
Done.

Recall that £i11_array () prescribes that input should quit when the user enters five
properties or enters a negative number, whichever comes first. The first output example
illustrates reaching the five-property limit, and the second output example illustrates that
entering a negative value terminates the input phase.

Program Notes

We’ve already discussed the important programming details related to the real estate
example, so let’s reflect on the process.You began by thinking about the data type and
designed appropriate functions to handle the data. Then you assembled these functions
into a program. This is sometimes called bottom-up programming because the design process
moves from the component parts to the whole. This approach is well suited to OOP,
which concentrates on data representation and manipulation first. Traditional procedural
programming, on the other hand, leans toward fop-down programming, in which you
develop a modular grand design first and then turn your attention to the details. Both
methods are useful, and both lead to modular programs.

The Usual Array Function Idiom
Suppose you want a function to process an array, say, of type double values. If the function
is intended to modify the array, the prototype might look like this:

void f modify(double ar[], int n);

If the function preserves values, the prototype might look like this:

void f no change(const double ar[], int n);

Of course, you can omit the variable names in the prototypes, and the return type might
be something other than void.The main points are that ar really is a pointer to the first
element of the passed array and that because the number of elements is passed as an argu-
ment, either function can be used with any size of array as long as it is an array of double:

double rewards[1000];
double faults[50];

f modify(rewards, 1000);
f_modify(faults, 50);

331

332

Chapter 7 Functions: C++’s Programming Modules

This idiom (pass the array name and size as arguments) works by passing two num-
bers—the array address and the number of elements. As you have seen, the function loses
some knowledge about the original array; for example, it can’t use sizeof to get the size
and relies on you to pass the correct number of elements.

Functions Using Array Ranges

As you've seen, C++ functions that process arrays need to be informed about the kind of
data in the array, the location of the beginning of the array, and the number of elements in
the array. The traditional C/C++ approach to functions that process arrays is to pass a
pointer to the start of the array as one argument and to pass the size of the array as a sec-
ond argument. (The pointer tells the function both where to find the array and the kind
of data in it.) That gives the function the information it needs to find all the data.

There is another approach to giving a function the information it needs: specify a range
of elements. This can be done by passing two pointers—one identifying the start of the
array and one identifying the end of the array. The C++ Standard Template Library (STL;
presented in Chapter 16,“The string Class and the Standard Template Library”), for
example, generalizes the range approach. The STL approach uses the concept of “one past
the end” to indicate an extent. That is, in the case of an array, the argument identifying the
end of the array would be a pointer to the location just after the last element. For exam-
ple, suppose you have this declaration:

double elbuod[20];

Then the two pointers elbuod and elbuod + 20 define the range. First, elbuod, being
the name of the array, points to the first element. The expression elbuod + 19 points to
the last element (that is, elbuod [19]), 0 elbuod + 20 points to one past the end of the
array. Passing a range to a function tells it which elements to process. Listing 7.8 modifies
Listing 7.6 to use two pointers to specify a range.

Listing 7.8 arrfun4.cpp

// arrfund.cpp -- functions with an array range
#include <iostream>
const int ArSize = 8§;
int sum_arr(const int * begin, const int * end);
int main()
{
using namespace std;
int cookies[ArSize] = {1,2,4,8,16,32,64,128};
// some systems require preceding int with static to
// enable array initialization

int sum = sum_arr(cookies, cookies + ArSize);

cout << "Total cookies eaten: " << sum << endl;

sum = sum_arr (cookies, cookies + 3); // first 3 elements
cout << "First three eaters ate " << sum << " cookies.\n";

Functions and Arrays

sum = sum_arr (cookies + 4, cookies + 8); // last 4 elements
cout << "Last four eaters ate " << sum << " cookies.\n";
return 0;

// return the sum of an integer array

int sum_arr(const int * begin, const int * end)
const int * pt;
int total = 0;

for (pt = begin; pt != end; pt++)
total = total + *pt;
return total;

Here’s the output of the program in Listing 7.8:

Total cookies eaten: 255
First three eaters ate 7 cookies.
Last four eaters ate 240 cookies.

Program Notes
In Listing 7.8, notice the for loop in the sum_array () function:

for (pt = begin; pt != end; pt++)
total = total + *pt;

It sets pt to point to the first element to be processed (the one pointed to by begin)
and adds *pt (the value of the element) to total.Then the loop updates pt by incre-
menting it, causing it to point to the next element. The process continues as long as pt !=
end. When pt finally equals end, it’s pointing to the location following the last element of
the range, so the loop halts.

Second, notice how the different function calls specify diftferent ranges within the array:

int sum = sum arr(cookies, cookies + ArSize);
sum = sum_arr (cookies, cookies + 3); // first 3 elements

sum = sum_arr (cookies + 4, cookies + 8); // last 4 elements

The pointer value cookies + ArSize points to the location following the last ele-
ment. (The array has ArSize elements, so cookies [ArSize - 1] is the last element, and
its address is cookies + ArSize - 1.) So the range cookies, cookies + ArSize speci-
fies the entire array. Similarly, cookies, cookies + 3 specifies the first three elements,
and so on.

333

334

Chapter 7 Functions: C++’s Programming Modules

Note, by the way, that the rules for pointer subtraction imply that, in sum_arr (), the
expression end - begin is an integer value equal to the number of elements in the range.

Also note that it’s important to pass the pointers in the correct order; the code assumes
that end comes after begin.

Pointers and const

Using const with pointers has some subtle aspects (pointers always seem to have subtle
aspects), so let’s take a closer look.You can use the const keyword two different ways with
pointers. The first way is to make a pointer point to a constant object, and that prevents
you from using the pointer to change the pointed-to value.The second way is to make
the pointer itself constant, and that prevents you from changing where the pointer points.
Now for the details.

First, let’s declare a pointer pt that points to a constant:
int age = 39;
const int * pt = &age;

This declaration states that pt points to a const int (39, in this case). Therefore, you
can’t use pt to change that value. In other words, the value *pt is const and cannot be

modified:

*pt += 1; // INVALID because pt points to a const int
cin >> *pt; // INVALID for the same reason

Now for a subtle point. This declaration for pt doesn’t necessarily mean that the value
it points to is really a constant; it just means the value is a constant insofar as pt is con-
cerned. For example, pt points to age, and age is not const.You can change the value of
age directly by using the age variable, but you can’t change the value indirectly via the pt

pointer:
*pt = 20; // INVALID because pt points to a const int
age = 20; // VALID because age is not declared to be const

Previous examples have assigned the address of a regular variable to a regular pointer.
This example assigns the address of a regular variable to a pointer-to-const. That leaves
two other possibilities: assigning the address of a const variable to a pointer-to-const and
assigning the address of a const to a regular pointer. Are they both possible? The first is,
and the second isn’t:

const float g earth = 9.80;
const float * pe = &g earth; // VALID

const float g moon = 1.63;
float * pm = &g moon; // INVALID

For the first case, you can use neither g_earth nor pe to change the value 9.80. C++
doesn’t allow the second case for a simple reason: If you can assign the address of g_moon
to pm, then you can cheat and use pm to alter the value of g_moon.That makes a mockery

Functions and Arrays

of g _moon’s const status, so C++ prohibits you from assigning the address of a const to a
non-const pointer. (If you are really desperate, you can use a type cast to override the
restriction; see Chapter 15, “Friends, Exceptions, and More,” for a discussion of the
const_cast Openﬂon)

The situation becomes a bit more complex if you have pointers to pointers. As you saw
earlier, assigning a non-const pointer to a const pointer is okay, provided that you’re
dealing with just one level of indirection:

int age = 39; // age++ is a valid operation
int * pd = &age; // *pd = 41 is a valid operation
const int * pt = pd; // *pt = 42 is an invalid operation

But pointer assignments that mix const and non-const in this manner are no longer
safe when you go to two levels of indirection. If mixing const and non-const were
allowed, you could do something like this:
const int **pp2;
int *pl;
const int n = 13;
pp2 = &pl; // not allowed, but suppose it were
*pp2 = &n; // valid, both const, but sets pl to point at n
*pl = 10; // valid, but changes const n

Here the code assigns a non-const address (spl) to a const pointer (pp2), and that
allows p1 to be used to alter const data. So the rule that you can assign a non-const
address or pointer to a const pointer works only if there is just one level of indirection—
for example, if the pointer points to a fundamental data type.

Note

You can assign the address of either const data or non-const data to a pointer-to-const,
provided that the data type is not itself a pointer, but you can assign the address of non-
const data only to a non-const pointer.

Suppose you have an array of const data:

const int months[12] = {31,28,31,30,31,30, 31, 31,30,31,30,31};

The prohibition against assigning the address of a constant array means that you can-
not pass the array name as an argument to a function by using a non-constant formal

argument:
int sum(int arr[], int n); // should have been const int arr|
int j = sum(months, 12); // not allowed

This function call attempts to assign a const pointer (months) to a non-const pointer
(arr), and the compiler disallows the function call.

335

336 Chapter 7 Functions: C++’s Programming Modules

Using const When You Can
There are two strong reasons to declare pointer arguments as pointers to constant data:
= |t protects you against programming errors that inadvertently alter data.
= Using const allows a function to process both const and non-const actual argu-
ments, whereas a function that omits const in the prototype can accept only non-
const data.

You should declare formal pointer arguments as pointers to const whenever it's appropriate
to do so.

For yet another subtle point, consider the following declarations:

int age = 39;
const int * pt = &age;

The const in the second declaration only prevents you from changing the value to
which pt points, which is 39. It doesn’t prevent you from changing the value of pt itself.
That is, you can assign a new address to pt:
int sage = 80;
pt = &sage; // okay to point to another location

But you still can’t use pt to change the value to which it points (now 80).
The second way to use const makes it impossible to change the value of the pointer
itself:
int sloth = 3;
const int * ps = &sloth; // a pointer to const int
int * const finger = &sloth; // a const pointer to int

Note that the last declaration has repositioned the keyword const. This form of decla-
ration constrains finger to point only to sloth. However, it allows you to use finger to
alter the value of sloth.The middle declaration does not allow you to use ps to alter the
value of sloth, but it permits you to have ps point to another location. In short, finger
and *ps are both const, and *finger and ps are not const (see Figure 7.5).

If you like, you can declare a const pointer to a const object:

double trouble = 2.0E30;
const double * const stick = &trouble;

Here stick can point only to trouble, and stick cannot be used to change the value
of trouble. In short, both stick and *stick are const.

Typically you use the pointer-to-const form to protect data when you pass pointers as
function arguments. For example, recall the show_array () prototype from Listing 7.5:

void show array(const double ar[], int n);

Using const in this declaration means that show_array () cannot alter the values in
any array that is passed to it. This technique works as long as there is just one level of indi-
rection. Here, for example, the array elements are a fundamental type. But if they were
pointers or pointers-to-pointers, you wouldn'’t use const.

Functions and Two-Dimensional Arrays

int gorp = 16;
int chips = 12;
const int * p_snack = &gorp;

*p_snack '= 20; p_snack = &chips;
disallows changing value p_snack can point
to which p_snack points to another variable

int gorp = 16;
int chips = 12;
int * const p_snack = &gorp;

*p_snack = 20; p_snack = &chips;
p_snack can be used disallows changing variable
to change value to which p_snack points

Figure 7.5 Pointersto-const and const pointers.

Functions and Two-Dimensional Arrays

To write a function that has a two-dimensional array as an argument, you need to remem-
ber that the name of an array is treated as its address, so the corresponding formal parame-
ter is a pointer, just as for one-dimensional arrays. The tricky part is declaring the pointer
correctly. Suppose, for example, that you start with this code:

int data(3](4] = {{1,2,3,4}, {9,8,7,6}, {2.4,6,8}};

int total = sum(data, 3);

‘What should the prototype for sum() look like? And why does the function pass the
number of rows (3) as an argument and not also the number of columns (4)?

Well, data is the name of an array with three elements. The first element is, itself, an
array of four int values. Thus, the type of data is pointer-to-array-of-four-int, so an
appropriate prototype would be this:

int sum(int (*ar2) [4], int size);

337

338

Chapter 7 Functions: C++’s Programming Modules

The parentheses are needed because the following declaration would declare an array
of four pointers-to-int instead of a single pointer-to-array-of-four-int, and a function
parameter cannot be an array:

int *ar2[4]

Here’s an alternative format that means exactly the same thing as this first prototype,
but, perhaps, is easier to read:

int sum(int ar2[] [4], int size);

Either prototype states that ar2 is a pointer, not an array. Also note that the pointer
type specifically says it points to an array of four ints. Thus, the pointer type specifies the
number of columns, which is why the number of columns is not passed as a separate func-
tion argument.

Because the pointer type specifies the number of columns, the sum () function only
works with arrays with four columns. But the number of rows is specified by the variable
size, so sum () can work with a varying number of rows:

int a[100] [4];

int b[6] [4];

int totall = sum(a, 100); // sum all of a

int total2 = sum(b, 6); // sum all of b

int total3 = sum(a, 10); // sum first 10 rows of a
int total4 = sum(a+10, 20); // sum next 20 rows of a

Given that the parameter ar2 is a pointer to an array, how do you use it in the function
definition? The simplest way is to use ar2 as if it were the name of a two-dimensional
array. Here’s a possible function definition:

int sum(int ar2[] [4], int size)

{

int total = 0;

for (int r = 0; r < size; r++)
for (int ¢ = 0; ¢ < 4; c++)

total += ar2[r][c];

return total;

Again, note that the number of rows is whatever is passed to the size parameter, but
the number of columns is fixed at four, both in the parameter declaration for ar2 and in
the inner for loop.

Here’s why you can use array notation. Because ar2 points to the first element (ele-
ment 0) of an array whose elements are array-of-four-int, the expression ar2 + r points
to element number r.Therefore ar2 [r] is element number r.That element is itself an
array-of-four-int, so ar2 [r] is the name of that array-of-four-int. Applying a subscript
to an array name gives an array element, so ar2 [r] [c] is an element of the array-of-four-
int, hence is a single int value. The pointer ar2 has to be dereferenced twice to get to

Functions and C-Style Strings

the data. The simplest way is to use brackets twice, as in ar2 [r] [c]. But it is possible, if
ungainly, to use the * operator twice:

ar2[r] [c] == *(*¥(ar2 + r) + ¢c) // same thing

To understand this, you can work out the meaning of the subexpressions from the
inside out:

ar2 // pointer to first row of an array of 4 int
ar2 + r // pointer to row r (an array of 4 int)
*(ar2 + r) // row r (an array of 4 int, hence the name of an array,

// thus a pointer to the first int in the row, i.e., ar2([r]

*(ar2 +r) + ¢ // pointer int number ¢ in row r, i.e., ar2[r] + c
*(*x(ar2 + r) + ¢ // value of int number c in row r, i.e. ar2l[r] [c]

Incidentally, the code for sum() doesn’t use const in declaring the parameter ar2
because that technique is for pointers to fundamental types, and ar2 is a pointer to a
pointer.

Functions and C-Style Strings

Recall that a C-style string consists of a series of characters terminated by the null charac-
ter. Much of what you’ve learned about designing array functions applies to string func-
tions, too. For example, passing a string as an argument means passing an address, and you
can use const to protect a string argument from being altered. But there are a few special
twists to strings that we’ll unravel now.

Functions with C-Style String Arguments
Suppose you want to pass a string as an argument to a function.You have three choices for
representing a string:

= An array of char

= A quoted string constant (also called a string literal)

= A pointer-to-char set to the address of a string

All three choices, however, are type pointer-to-char (more concisely, type char *), so
you can use all three as arguments to string-processing functions:

char ghost[15] = "galloping";

char * str = "galumphing";

int nl = strlen(ghost); // ghost is &ghost [0]
int n2 = strlen(str); // pointer to char
int n3 = strlen("gamboling"); // address of string

Informally, you can say that you’re passing a string as an argument, but you’re really pass-
ing the address of the first character in the string. This implies that a string function proto-
type should use type char * as the type for the formal parameter representing a string.

339

340

Chapter 7 Functions: C++’s Programming Modules

One important difference between a C-style string and a regular array is that the string
has a built-in terminating character. (Recall that a char array containing characters but no
null character is just an array and not a string.) That means you don’t have to pass the size
of the string as an argument. Instead, the function can use a loop to examine each charac-
ter in the string in turn until the loop reaches the terminating null character. Listing 7.9
illustrates that approach with a function that counts the number of times a given character
appears in a string. Because the program doesn’t need to deal with negative values, it uses
unsigned int as the type for counting.

Listing 7.9 strgfun.cpp

// strgfun.cpp -- functions with a string argument
#include <iostreams>
unsigned int c_in str(const char * str, char ch);
int main()
{

using namespace std;

char mmm[15] = "minimum"; // string in an array
// some systems require preceding char with static to
// enable array initialization

char *wail = "ululate"; // wail points to string

unsigned int ms = c_in str(mmm, 'm');
unsigned int us = c_in_str(wail, 'u');

cout << ms << " characters in " << mmm << endl;

c 3

cout << us << " characters in " << wail << endl;

return 0;

// this function counts the number of ch characters
// in the string str
unsigned int c_in_str(const char * str, char ch)

{

unsigned int count = 0;

while (*str) // quit when *str is '\0'
{
if (*str == ch)
count++;
str++; // move pointer to next char

}

return count;

Functions and C-Style Strings

Here’s the output of the program in Listing 7.9:

3 m characters in minimum

2 u characters in ululate

Program Notes

Because the ¢_int_str () function in Listing 7.9 shouldn’t alter the original string, it uses
the const modifier when it declares the formal parameter str.Then if you mistakenly let
the function alter part of the string, the compiler catches your error. Of course, you can
use array notation instead to declare str in the function header:

unsigned int c_in_str(const char str[], char ch) // also okay

However, using pointer notation reminds you that the argument doesn’t have to be the
name of an array but can be some other form of pointer.
The function itself demonstrates a standard way to process the characters in a string:

while (*str)

{

statements

str++;

Initially, str points to the first character in the string, so *str represents the first char-
acter itself. For example, immediately after the first function call, *str has the value m, the
first character in minimum. As long as the character is not the null character (\0), *str is
nonzero, so the loop continues. At the end of each loop, the expression str++ increments
the pointer by 1 byte so that it points to the next character in the string. Eventually, str
points to the terminating null character, making *str equal to 0, which is the numeric
code for the null character. That condition terminates the loop. (Why are string-processing
functions ruthless? Because they stop at nothing.)

Functions That Return C-Style Strings

Now suppose you want to write a function that returns a string. Well, a function can’t do
that. But it can return the address of a string, and that’s more efficient. Listing 7.10, for
example, defines a function called buildstr () that returns a pointer. This function takes
two arguments: a character and a number. Using new, the function creates a string whose
length equals the number, and then it initializes each element to the character. Then it
returns a pointer to the new string.

Listing 7.10 strgback.cpp

// strgback.cpp -- a function that returns a pointer to char
#include <iostream>

char * buildstr(char ¢, int n); // prototype

int main()

{

341

342 Chapter 7 Functions: C++’s Programming Modules

using namespace std;
int times;
char ch;

cout << "Enter a character: ";
cin >> ch;

cout << "Enter an integer: ";
cin >> times;

char *ps = buildstr(ch, times);
cout << ps << endl;

delete [] ps; // free memory
ps = buildstr('+', 20); // reuse pointer
cout << ps << "-DONE-" << ps << endl;

delete [] ps; // free memory
return 0;

// builds string made of n ¢ characters
char * buildstr(char ¢, int n)

{
char * pstr = new char([n + 1];
pstr[n] = '\0'; // terminate string
while (n-- > 0)
pstrn] = c¢; // £ill rest of string
return pstr;
1

Here’s a sample run of the program in Listing 7.10:

Enter a character: V
Enter an integer: 46
+ttttttt ottt -DONE - ++++++++++++++++++++

Program Notes
To create a string of n visible characters, you need storage for n + 1 characters in order to
have space for the null character. So the function in Listing 7.10 asks for n + 1 bytes to
hold the string. Next, it sets the final byte to the null character. Then it fills in the rest of
the array from back to front. In Listing 7.10, the following loop cycles n times as n
decreases to 0, filling n elements:
while (n-- > 0)

pstrn] = c;

At the start of the final cycle, n has the value 1. Because n-- means use the value and
then decrement it, the while loop test condition compares 1 to 0, finds the test to be
true, and continues. But after making the test, the function decrements n to 0, so pstr [0]

Functions and Structures

is the last element set to c.The reason for filling the string from back to front instead of
front to back is to avoid using an additional variable. Using the other order would involve
something like this:
int i = 0;
while (i < n)

pstr[i++] = c;

Note that the variable pstr is local to the buildstr function, so when that function
terminates, the memory used for pstr (but not for the string) is freed. But because the
function returns the value of pstr, the program is able to access the new string through
the ps pointer in main ().

The program in Listing 7.10 uses delete to free memory used for the string after the
string is no longer needed. Then it reuses ps to point to the new block of memory
obtained for the next string and frees that memory. The disadvantage to this kind of
design (having a function return a pointer to memory allocated by new) is that it makes it
the programmer’s responsibility to remember to use delete. In Chapter 12,“Classes and
Dynamic Memory Allocation,” you’ll see how C++ classes, by using constructors and
destructors, can take care of these details for you.

Functions and Structures

Let’s move from arrays to structures. It’s easier to write functions for structures than for
arrays. Although structure variables resemble arrays in that both can hold several data
items, structure variables behave like basic, single-valued variables when it comes to func-
tions. That is, unlike an array, a structure ties its data in to a single entity, or data object,
that will be treated as a unit. Recall that you can assign one structure to another. Similarly,
you can pass structures by value, just as you do with ordinary variables. In that case, the
function works with a copy of the original structure. Also a function can return a struc-
ture. There’s no funny business like the name of an array being the address of its first ele-
ment. The name of a structure is simply the name of the structure, and if you want its
address, you have to use the & address operator. (C++ and C both use the & symbol to
denote the address operator. C++ additionally uses this operator to identify reference
variables, to be discussed in Chapter 8.)

The most direct way to program by using structures is to treat them as you would treat
the basic types—that is, pass them as arguments and use them, if necessary, as return values.
However, there is one disadvantage to passing structures by value. If the structure is large,
the space and effort involved in making a copy of a structure can increase memory
requirements and slow down the system. For those reasons (and because, at first, C didn’t
allow the passing of structures by value), many C programmers prefer passing the address
of a structure and then using a pointer to access the structure contents. C++ provides a
third alternative, called passing by reference, that is discussed in Chapter 8. Let’s examine the
other two choices now, beginning with passing and returning entire structures.

343

344

Chapter 7 Functions: C++’s Programming Modules

Passing and Returning Structures

Passing structures by value makes the most sense when the structure is relatively compact,
so let’s look at a couple examples along those lines. The first example deals with travel time
(not to be confused with time travel). Some maps will tell you that it is 3 hours, 50 min-
utes, from Thunder Falls to Bingo City and 1 hour, 25 minutes, from Bingo City to
Grotesquo.You can use a structure to represent such times, using one member for the hour
value and a second member for the minute value. Adding two times is a little tricky
because you might have to transfer some of the minutes to the hours part. For example, the
two preceding times sum to 4 hours, 75 minutes, which should be converted to 5 hours, 15
minutes. Let’s develop a structure to represent a time value and then a function that takes
two such structures as arguments and returns a structure that represents their sum.
Defining the structure is simple:

struct travel time

int hours;
int mins;

}i

Next, consider the prototype for a sum() function that returns the sum of two such
structures. The return value should be type travel time,and so should the two argu-
ments. Thus, the prototype should look like this:

travel time sum(travel time tl, travel time t2);
To add two times, you first add the minute members. Integer division by 60 yields the
number of hours to carry over, and the modulus operation (%) yields the number of min-

utes left. Listing 7.11 incorporates this approach into the sum() function and adds a
show_time () function to display the contents of a travel time structure.

Listing 7.11 travel.cpp

// travel.cpp -- using structures with functions
#include <iostream>
struct travel time

int hours;

int mins;

const int Mins per hr = 60;

travel time sum(travel time tl, travel time t2);
void show time(travel time t);

int main()

{

using namespace std;

Functions and Structures 345

travel time dayl = {5, 45}; // 5 hrs, 45 min
travel time day2 = {4, 55}; // 4 hrs, 55 min

travel time trip = sum(dayl, day2);
cout << "Two-day total: ";
show_time (trip) ;

travel time day3= {4, 32};
cout << "Three-day total: ";
show_time (sum(trip, day3));

return 0;

travel_time sum(travel time tl, travel time t2)

{

travel time total;

total.mins = (tl.mins + t2.mins) % Mins_per hr;
total.hours = tl.hours + t2.hours +

(t1.mins + t2.mins) / Mins_per hr;
return total;

void show_time (travel time t)
using namespace std;
cout << t.hours << " hours, "
<< t.mins << " minutes\n";

Here travel_time acts just like a standard type name; you can use it to declare vari-
ables, function return types, and function argument types. Because variables such as total
and t1 are travel time structures, you can apply the dot membership operator to them.
Note that because the sum() function returns a travel_ time structure, you can use it as
an argument for the show_time () function. Because C++ functions, by default, pass argu-
ments by value, the show_time (sum(trip, day3)) function call first evaluates the
sum(trip, day3) function call in order to find its return value. The show time () call
then passes sum () s return value, not the function itself, to show_time (). Here’s the output
of the program in Listing 7.11:

Two-day total: 10 hours, 40 minutes
Three-day total: 15 hours, 12 minutes

346

Chapter 7 Functions: C++’s Programming Modules

Another Example of Using Functions with Structures

Much of what you learn about functions and C++ structures carries over to C++ classes,
so it’s worth looking at a second example. This time let’s deal with space instead of time. In
particular, this example defines two structures representing two different ways of describ-
ing positions and then develops functions to convert one form to the other and show the
result. This example is a bit more mathematical than the last, but you don’t have to follow
the mathematics to follow the C++.

Suppose you want to describe the position of a point on the screen or a location on a
map relative to some origin. One way is to state the horizontal offset and the vertical off-
set of the point from the origin. Traditionally, mathematicians use the symbol x to repre-
sent the horizontal offset and y to represent the vertical offset (see Figure 7.6). Together, x
and y constitute rectangular coordinates.You can define a structure consisting of two coordi-
nates to represent a position:

y coordinate ;- — — — — — — Micromips

>

Nerdhaven

Byteville

'— — — — X-axis
x coordinate

rectangular coordinates of Micromips relative to Byteville

Figure 7.6 Rectangular coordinates.

struct rect

{
double x; // horizontal distance from origin

double y; // vertical distance from origin

}i

A second way to describe the position of a point is to state how far it is from the
origin and in what direction it is (for example, 40 degrees north of east). Traditionally,
mathematicians have measured the angle counterclockwise from the positive horizontal

Functions and Structures

axis (see Figure 7.7).The distance and angle together constitute polar coordinates.You can
define a second structure to represent this view of a position:

struct polar

{
double distance; // distance from origin
double angle; // direction from origin

Micromips

Nerdhaven

angle A

Byteville

polar coordinates of Micromips relative to Byteville

Figure 7.7 Polar coordinates.

Let’s construct a function that displays the contents of a type polar structure. The math
functions in the C++ library (borrowed from C) assume that angles are in radians, so you
need to measure angles in that unit. But for display purposes, you can convert radian

measure to degrees. This means multiplying by 180/7, which is approximately
57.29577951. Here’s the function:

// show polar coordinates, converting angle to degrees
void show_polar (polar dapos)
{

using namespace std;

const double Rad _to deg = 57.29577951;

cout << "distance = " << dapos.distance;
cout << ", angle = " << dapos.angle * Rad_to_deg;
cout << " degrees\n";

347

348

Chapter 7 Functions: C++’s Programming Modules

Notice that the formal variable is type polar.When you pass a polar structure to this
function, the structure contents are copied into the dapos structure, and the function then
uses that copy in its work. Because dapos is a structure, the function uses the membership
(dot) operator (see Chapter 4) to identify structure members.

Next, let’s try something more ambitious and write a function that converts rectangular
coordinates to polar coordinates. We’ll have the function accept a rect structure as its
argument and return a polar structure to the calling function. This involves using func-
tions from the math library, so the program has to include the cmath header file (math.h
on older systems). Also on some systems you have to tell the compiler to load the math
library (see Chapter 1,“Getting Started with C++7).You can use the Pythagorean theo-
rem to get the distance from the horizontal and vertical components:

distance = sqrt(x * x + y * y)

The atan2 () function from the math library calculates the angle from the x and y values:

angle = atan2(y, x)

(There’s also an atan () function, but it doesn’t distinguish between angles 180
degrees apart. That uncertainty is no more desirable in a math function than it is in a
wilderness guide.)

Given these formulas, you can write the function as follows:

// convert rectangular to polar coordinates
polar rect to polar(rect xypos) // type polar

{

polar answer;

answer.distance =

sqrt (Xypos.X * Xypos.X + XyposS.y * Xypos.y);
answer.angle = atan2 (xypos.y, Xypos.X);
return answer; // returns a polar structure

Now that the functions are ready, writing the rest of the program is straightforward.
Listing 7.12 presents the result.

Listing 7.12 strctfun.cpp

// strctfun.cpp -- functions with a structure argument
#include <iostreams>
#include <cmath>

// structure declarations
struct polar
{
double distance; // distance from origin
double angle; // direction from origin
}i

struct rect

Functions and Structures

double x; // horizontal distance from origin
double y; // vertical distance from origin

}i

// prototypes
polar rect_to_polar(rect xypos);
void show_polar (polar dapos);

int main()

{
using namespace std;
rect rplace;
polar pplace;

cout << "Enter the x and y values: ";
while (cin >> rplace.x >> rplace.y) // slick use of cin
{
pplace = rect_to_polar(rplace);
show_polar (pplace) ;
cout << "Next two numbers (g to quit): ";
}
cout << "Done.\n";
return 0;

// convert rectangular to polar coordinates
polar rect_to_polar(rect xypos)

using namespace std;

polar answer;

answer.distance =

sqrt (Xypos.x * Xypos.X + Xypos.y * Xypos.y);
answer.angle = atan2 (xypos.y, Xypos.X);
return answer; // returns a polar structure

// show polar coordinates, converting angle to degrees
void show polar (polar dapos)
{

using namespace std;

const double Rad to deg = 57.29577951;

cout << "distance = " << dapos.distance;
cout << ", angle = " << dapos.angle * Rad_to_deg;
cout << " degrees\n";

349

350 Chapter 7 Functions: C++’s Programming Modules

Note

Some compilers require explicit instructions to search the math library. For example, older
versions of g++ uses this command line:

g++ structfun.C -1m

Here is a sample run of the program in Listing 7.12:

Enter the x and y values: 30 40
distance = 50, angle = 53.1301 degrees
Next two numbers (g to quit): -100 100
distance = 141.421, angle = 135 degrees
Next two numbers (g to quit): q

Program Notes
We’ve already discussed the two functions in Listing 7.12, so let’s review how the program
uses cin to control a while loop:

while (cin >> rplace.x >> rplace.y)

Recall that cin is an object of the istream class. The extraction operator (>>) is
designed in such a way that cin >> rplace.x also is an object of that type. As you’ll see
in Chapter 11,“Working with Classes,” class operators are implemented with functions.
What really happens when you use cin >> rplace.x is that the program calls a function
that returns a type istream value. If you apply the extraction operator to the cin >>
rplace.x object (as in cin >> rplace.x >> rplace.y),you again get an object of the
istream class. Thus, the entire while loop test expression eventually evaluates to cin,
which, as you may recall, when used in the context of a test expression, is converted to a
bool value of true or false, depending on whether input succeeded. In the loop in
Listing 7.12, for example, cin expects the user to enter two numbers. If, instead, the user
enters g, as shown in the sample output, cin >> recognizes that g is not a number. It
leaves the g in the input queue and returns a value that’s converted to false, terminating
the loop.

Compare that approach for reading numbers to this simpler one:

for (int 1 = 0; 1 < limit; i++)
{
cout << "Enter value #" << (i + 1) << ": ";
cin >> temp;
if (temp < 0)
break;
ar[i] = temp;

To terminate this loop early, you enter a negative number. This restricts input to non-
negative values. This restriction fits the needs of some programs, but more typically you

Functions and Structures

would want a means of terminating a loop that doesn’t exclude certain numeric values.
Using cin >> as the test condition eliminates such restrictions because it accepts all valid
numeric input.You should keep this trick in mind when you need an input loop for num-
bers. Also, you should keep in mind that non-numeric input sets an error condition that
prevents the reading of any more input. If a program needs input subsequent to the input
loop, you must use cin.clear () to reset input, and you might then need to get rid of the
offending input by reading it. Listing 7.7 illustrates those techniques.

Passing Structure Addresses

Suppose you want to save time and space by passing the address of a structure instead of
passing the entire structure. This requires rewriting the functions so that they use pointers
to structures. First, let’s look at how you rewrite the show_polar () function.You need to
make three changes:

= When calling the function, pass it the address of the structure (spplace) rather than
the structure itself (pplace).

= Declare the formal parameter to be a pointer-to-polar—that is, type polar *.
Because the function shouldn’t modify the structure, use the const modifier.

= Because the formal parameter is a pointer instead of a structure, use the indirect
membership operator (->) rather than the membership operator (dot).

After these changes are made, the function looks like this:

// show polar coordinates, converting angle to degrees
void show_polar (const polar * pda)

{

using namespace std;
const double Rad_to deg = 57.29577951;

cout << "distance = " << pda->distance;
cout << ", angle = " << pda->angle * Rad_to_deg;
cout << " degrees\n";

Next, let’s alter rect_to_polar.This is more involved because the original
rect_to_polar function returns a structure. To take full advantage of pointer efficiency,
you should use a pointer instead of a return value. The way to do this is to pass two point-
ers to the function. The first points to the structure to be converted, and the second points
to the structure that’s to hold the conversion. Instead of returning a new structure, the
function modifies an existing structure in the calling function. Hence, although the first
argument is const pointer, the second is not const. Otherwise, you apply the same prin-
ciples used to convert show_polar () to pointer arguments. Listing 7.13 shows the
reworked program.

351

352 Chapter 7 Functions: C++’s Programming Modules

Listing 7.13 strctptr.cpp

// strctptr.cpp -- functions with pointer to structure arguments
#include <iostream>
#include <cmath>

// structure templates
struct polar
{
double distance; // distance from origin
double angle; // direction from origin
}i
struct rect
{
double x; // horizontal distance from origin
double y; // vertical distance from origin

}i

// prototypes
void rect to polar(const rect * pxy, polar * pda);
void show polar (const polar * pda);

int main()

{
using namespace std;
rect rplace;
polar pplace;

cout << "Enter the x and y values: ";

while (cin >> rplace.x >> rplace.y)

{
rect_to polar(&rplace, &pplace); // pass addresses
show_polar (&pplace) ; // pass address
cout << "Next two numbers (g to quit): ";

1

cout << "Done.\n";

return 0;

// show polar coordinates, converting angle to degrees
void show_polar (const polar * pda)
{

using namespace std;

const double Rad to deg = 57.29577951;

cout << "distance = " << pda->distance;
cout << ", angle = " << pda->angle * Rad_to_deg;

Functions and string Class Objects

cout << " degrees\n";

// convert rectangular to polar coordinates
void rect to polar(const rect * pxy, polar * pda)
{
using namespace std;
pda->distance =
sqrt (pxy->x * pxy->X + PXy->y * pxy->y);
pda->angle = atan2 (pxy->y, pXy->X);

Note

Some compilers require explicit instructions to search the math library. For example, older
versions of g++ use this command line:

g++ structfun.C -1m

From the user’s standpoint, the program in Listing 7.13 behaves like that in Listing
7.12.The hidden difterence is that Listing 7.12 works with copies of structures, whereas
Listing 7.13 uses pointers, allowing the functions to operate on the original structures.

Functions and string Class Objects

Although C-style strings and string class objects serve much the same purpose, a string
class object is more closely related to a structure than to an array. For example, you can
assign a structure to another structure and an object to another object.You can pass a
structure as a complete entity to a function, and you can pass an object as a complete
entity. If you need several strings, you can declare a one-dimensional array of string
objects instead of a two-dimensional array of char.

Listing 7.14 provides a short example that declares an array of string objects and passes
the array to a function that displays the contents.

Listing 7.14 topfive.cpp

// topfive.cpp -- handling an array of string objects
#include <iostreams

#include <string>

using namespace std;

const int SIZE = 5;

void display(const string sal], int n);
int main()
{
string list[SIZE]; // an array holding 5 string object

cout << "Enter your " << SIZE << " favorite astronomical sights:\n";

353

354 Chapter 7 Functions: C++’s Programming Modules

for (int 1 = 0; 1 < SIZE; i++)
cout << i + 1 << ": ";
getline(cin,list[i]);

cout << "Your list:\n";
display(list, SIZE);

return 0;
void display(const string sal], int n)
for (int i = 0; 1 < n; i++)
cout << 1 + 1 << ": " << sali] << endl;

Here’s a sample run of the program in Listing 7.14:

Enter your 5 favorite astronomical sights:

1: Orion Nebula
2: M13

3: Saturn

4: Jupiter

5: Moon

Your list:

1: Orion Nebula
¢ M13

Saturn

: Jupiter

Ul W N

: Moon

The main point to note in this example is that, aside from the getline () function, this
program treats string just as it would treat any of the built-in types, such as int. If you
want an array of string, you just use the usual array-declaration format:

string list [SIZE]; // an array holding 5 string object

Each element of the 1ist array, then, is a string object and can be used as such:
getline(cin,list[i]);

Similarly, the formal argument sa is a pointer to a string object, so sa[i] is a string
object and can be used accordingly:

cout << 1 + 1 << ": " << sali] << endl;

Functions and array Objects

Functions and array Objects

Class objects in C++ are based on structures, so some of the same programming consider-
ations that apply to structures also apply to classes. For example, you can pass an object by
value to a function, in which case the function acts on a copy of the original object. Alter-
natively, you can pass a pointer to an object, which allows the function to act on the origi-
nal object. Let’s look at an example using the C++11 array template class.

Suppose we have an array object intended to hold expense figures for each of the four
seasons of the year:

std::array<double, 4> expenses;
(Recall that using the array class requires the array header file and that the name

array is part of the std namespace.) If we want a function to display the contents of
expenses, we can pass expenses by value:

show (expenses) ;

But if we want a function that modifies the expenses object, we need to pass the
address of the object to the function:
fill (&expenses) ;

(The next chapter discusses an alternative approach, using references.) This is the same
approach that Listing 7.13 used for structures.

How can we declare these two functions? The type of expenses is array<double, 4>,
so that’s what must appear in the prototypes:

void show(std::array<double, 4> da); // da an object
void fill(std::array<double, 4> * pa); // pa a pointer to an object

These considerations form the core of the sample program.The program adds a few
more features. First, it replaces 4 with a symbolic constant:
const int Seasons = 4;

Second, it adds a const array object containing four string objects representing the
four seasons:
const std::array<std::string, Seasons> Snames =

{"spring", "Summer", "Fall", "Winter"};

Note that the array template is not limited to holding the basic data types; it can use
class types too. Listing 7.15 presents the program in full.

Listing 7.15 arrobj.cpp

//arrobj.cpp -- functions with array objects (C++11)
#include <iostream>

#include <array>

#include <string>

// constant data

355

356

Chapter 7 Functions: C++’s Programming Modules

const int Seasons = 4;
const std::array<std::string, Seasons> Snames =
{"Spring", "Summer", "Fall", "Winter"};

// function to modify array object

void fill (std::array<double, Seasons> * pa);

// function that uses array object without modifying it
void show(std::array<double, Seasons> da);

int main()
std::array<double, Seasons> expenses;
fill (&expenses) ;
show (expenses) ;
return 0;

void fill (std::array<double, Seasons> * pa)
using namespace std;
for (int 1 = 0; 1 < Seasons; i++)
cout << "Enter " << Snames[i] << " expenses: ";
cin >> (*pa) [i];

void show(std::array<double, Seasons> da)
{
using namespace std;
double total = 0.0;
cout << "\nEXPENSES\n";
for (int i = 0; 1 < Seasons; 1++)
{
cout << Snames[i] << ": $" << da[i] << endl;
total += dalil;
1

cout << "Total Expenses: S$" << total << endl;

Here’s a sample run:

Enter Spring expenses: 212
Enter Summer expenses: 256
Enter Fall expenses: 208

Enter Winter expenses: 244

Recursion

EXPENSES
Spring: $212
Summer: $256

Fall: $208
Winter: $244
Total: $920

Program Notes

Because the const array object Snames is declared above all the functions, it can be used
in any of the following function definitions. Like the const Seasons, Snames is shared by
the whole source code file. The program doesn’t have a using directive, so array and
string have to be used with the str:: qualifier. To keep the program short and focused
on how functions can use objects, the £111 () function doesn’t check for valid input.

Both £i11 () and show () have drawbacks. For show (), the problem is that expenses
holds four double values and it’s inefficient to create a new object of that size and to copy
the expenses values into it. The problem gets worse if we modify the program to handle
expenses on a monthly basis or daily basis and expand expenses accordingly.

The £i11 () function avoids this inefficiency problem by using a pointer so that the
function acts on the original object. But this comes at the cost of notation that makes the
programming look more complicated:

fill (&expenses) ; // don't forget the &

cin >> (*pa) [i];

In the last statement, pa is a pointer to an array<double, 4> object,so *pa is the
object,and (*pa) [i] is an element in the object. The parentheses are required because of
operator precedence. The logic is straightforward, but results enhance opportunities for
making errors.

Using references, as discussed in Chapter 8, helps solve both the efficiency and the
notational problems.

Recursion

And now for something completely different. A C++ function has the interesting charac-

teristic that it can call itself. (Unlike C, however, C++ does not let main () call itself.) This
ability is termed recursion. R ecursion is an important tool in certain types of programming,
such as artificial intelligence, but we’ll just take a superficial look (artificial shallowness) at

how it works.

357

358

Chapter 7 Functions: C++’s Programming Modules

Recursion with a Single Recursive Call

If a recursive function calls itself, then the newly called function calls itself, and so on, ad
infinitum unless the code includes something to terminate the chain of calls. The usual
method is to make the recursive call part of an if statement. For example, a type void
recursive function called recurs () can have a form like this:

void recurs(argumentlist)

{

statementsl
if (test)

recurs (arguments)
statements2

With luck or foresight, test eventually becomes false, and the chain of calls is broken.

Recursive calls produce an intriguing chain of events. As long as the if statement
remains true, each call to recurs () executes statementsi and then invokes a new incar-
nation of recurs () without reaching statements2. When the if statement becomes
false, the current call then proceeds to statements2.Then when the current call termi-
nates, program control returns to the previous version of recurs () that called it. Then,
that version of recurs () completes executing its statements2 section and terminates,
returning control to the prior call, and so on. Thus, if recurs () undergoes five recursive
calls, first the statements1 section is executed five times in the order in which the func-
tions were called, and then the statements2 section is executed five times in the opposite
order from the order in which the functions were called. After going into five levels of
recursion, the program then has to back out through the same five levels. Listing 7.16
illustrates this behavior.

Listing 7.16 recur.cpp

// recur.cpp -- using recursion
#include <iostreams>
void countdown (int n);

int main()
countdown (4) ; // call the recursive function
return 0;

void countdown (int n)
using namespace std;
cout << "Counting down ... " << n << endl;
if (n > 0)

Recursion

countdown (n-1) ; // function calls itself
cout << n << ": Kaboom!\n";

Here’s the annotated output of the program in Listing 7.16:

: Kaboom! <level
: Kaboom! <level

Counting down ... 4 <level 1; adding levels of recursion
Counting down ... 3 <level 2
Counting down ... 2 <level 3
Counting down ... 1 <level 4
Counting down ... 0 <level 5; final recursive call
0: Kaboom! <level 5; beginning to back out
: Kaboom! <level 4
3
2
1

BwW N e

: Kaboom! <level

Note that each recursive call creates its own set of variables, so by the time the program
reaches the fifth call, it has five separate variables called n, each with a different value.You
can verify this for yourself by modifying Listing 7.16 so that it displays the address of n as
well as its value:

cout << "Counting down ... " << n << " (n at " << &n << ")" << endl;

cout << n << ": Kaboom!"; << " (n at " << &n << ")" << endl;

Doing so produces output like the following:

n at 0012FEOC
at 0012FD34

Counting down ...
Counting down ...

=}

4
3
Counting down ... 2
1
0

()

()

(n at 0012FC5C)
Counting down ... (n at 0012FB84)
Counting down ... (n at 0012FAAC)
0: Kaboom! (n at 0012FAAC)
1: Kaboom! (n at 0012FB84)
2: Kaboom! (n at 0012FC5C)
3: Kaboom! (n at 0012FD34)
4: Kaboom! (n at 0012FEO0C)

Note how the n having the value 4 is stored at one location (memory address
0012FEOC in this example), the n having the value 3 is stored at a second location (mem-
ory address 0012FD34), and so on. Also note how the address of n for a particular level
during the “Counting down” stage is the same as its address for the same level during the
“Kaboom!” stage.

Recursion with Multiple Recursive Calls

Recursion is particularly useful for situations that call for repeatedly subdividing a task
into two smaller, similar tasks. For example, consider this approach to drawing a ruler.

359

360

Chapter 7 Functions: C++’s Programming Modules

Mark the two ends, locate the midpoint, and mark it. Then apply this same procedure to
the left half of the ruler and then to the right half. If you want more subdivisions, apply
the same procedure to each of the current subdivisions. This recursive approach is
sometimes called the divide-and-conquer strategy. Listing 7.17 illustrates this approach, with
the recursive function subdivide (). It uses a string initially filled with spaces except for a
| character at each end. The main program uses a loop to call the subdivide () function
six times, each time increasing the number of recursion levels and printing the resulting
string. Thus, each line of output represents an additional level of recursion. To remind you
that it’s an option, the program uses the std: : qualifier instead of a using directive.

Listing 7.17 ruler.cpp

// ruler.cpp -- using recursion to subdivide a ruler
#include <iostream>

const int Len = 66;

const int Divs = 6;

void subdivide (char ar[], int low, int high, int level);
int main()

{
char ruler[Len];
int i;
for (1 = 1; 1 < Len - 2; 1++)
ruler[i] = ' ';
ruler[Len - 1] = '\0';
int max = Len - 2;
int min = 0;
ruler [min] = ruler[max] = '|';
std::cout << ruler << std::endl;
for (1 = 1; 1 <= Divs; 1i++)
{
subdivide (ruler,min,max, 1i);
std::cout << ruler << std::endl;
for (int j = 1; j < Len - 2; j++)
ruler(j] = ' '; // reset to blank ruler
1
return 0;
1
void subdivide (char ar[], int low, int high, int level)
{
if (level == 0)
return;

int mid = (high + low) / 2;

Pointers to Functions

ar[mid] = '|';
subdivide (ar, low, mid, level - 1);
subdivide (ar, mid, high, level - 1);

Here is the output of the program in Listing 7.17:

Program Notes

The subdivide () function in Listing 7.17 uses the variable level to control the recur-
sion level. When the function calls itself, it reduces level by one, and the function with a
level of 0 terminates. Note that subdivide () calls itself twice, once for the left subdivi-
sion and once for the right subdivision. The original midpoint becomes the right end for
one call and the left end for the other call. Notice that the number of calls grows geomet-
rically. That is, one call generates two, which generate four calls, which generate eight, and
so on.That’s why the level 6 call is able to fill in 64 elements (2° = 64).This continued
doubling of the number of function calls (and hence of the number of variables stored)
make this form of recursion a poor choice if many levels of recursion are required. But it
is an elegant and simple choice if the necessary levels of recursion are few.

Pointers to Functions

No discussion of C or C++ functions would be complete without mention of pointers to
functions. We’ll take a quick look at this topic and leave the full exposition of the possibil-
ities to more advanced texts.

Functions, like data items, have addresses. A function’s address is the memory address at
which the stored machine language code for the function begins. Normally, it’s neither
important nor useful for you or the user to know that address, but it can be useful to a
program. For example, it’s possible to write a function that takes the address of another
function as an argument. That enables the first function to find the second function and
run it. This approach is more awkward than simply having the first function call the sec-
ond one directly, but it leaves open the possibility of passing different function addresses at
different times. That means the first function can use different functions at different times.

361

362

Chapter 7 Functions: C++’s Programming Modules

Function Pointer Basics

Let’s clarify this process with an example. Suppose you want to design an estimate ()
function that estimates the amount of time necessary to write a given number of lines of
code, and you want different programmers to use the function. Part of the code for
estimate () will be the same for all users, but the function will allow each programmer to
provide his or her own algorithm for estimating time. The mechanism for that will be to
pass to estimate () the address of the particular algorithm function the programmer
wants to use. To implement this plan, you need to be able to do the following:

= Obtain the address of a function.
= Declare a pointer to a function.

= Use a pointer to a function to invoke the function.

Obtaining the Address of a Function

Obtaining the address of a function is simple:You just use the function name without
trailing parentheses. That is, if think () is a function, then think is the address of the func-
tion. To pass a function as an argument, you pass the function name. Be sure you distin-
guish between passing the address of a function and passing the return value of a function:

process (think) ; // passes address of think() to process()
thought (think()); // passes return value of think() to thought ()

The process () call enables the process () function to invoke the think () function
from within process (). The thought () call first invokes the think () function and then
passes the return value of think () to the thought () function.

Declaring a Pointer to a Function

To declare pointers to a data type, the declaration has had to specify exactly to what type
the pointer points. Similarly, a pointer to a function has to specify to what type of func-
tion the pointer points. This means the declaration should identify the function’s return
type and the function’s signature (its argument list). That is, the declaration should provide
the same information about a function that a function prototype does. For example, sup-
pose Pam LeCoder has written a time-estimating function with the following prototype:

double pam(int); // prototype

Here’s what a declaration of an appropriate pointer type looks like:
double (*pf) (int); // pf points to a function that takes
// one int argument and that
// returns type double
Tip
In general, to declare a pointer to a particular kind of function, you can first write a prototype

for a regular function of the desired kind and then replace the function name with an expres-
sion in the form (*pf). In this case, pf is a pointer to a function of that type.

Pointers to Functions

The declaration requires the parentheses around *pf to provide the proper operator
precedence. Parentheses have a higher precedence than the * operator, so *pf (int) means
pf () is a function that returns a pointer, whereas (*pf) (int) means pf is a pointer to a
function:

double (*pf) (int); // pf points to a function that returns double
double *pf (int); // pf() a function that returns a pointer-to-double

After you declare pf properly, you can assign to it the address of a matching function:
double pam(int) ;

double (*pf) (int);
pf = pam; // pf now points to the pam() function

Note that pam () has to match pf in both signature and return type. The compiler rejects
nonmatching assignments:

double ned(double) ;

int ted(int);

double (*pf) (int);

pf = ned; // invalid -- mismatched signature

pf = ted; // invalid -- mismatched return types

Let’s return to the estimate () function mentioned earlier. Suppose you want to pass
to it the number of lines of code to be written and the address of an estimating algorithm,
such as the pam() function. It could have the following prototype:

void estimate(int lines, double (*pf) (int));

This declaration says the second argument is a pointer to a function that has an int
argument and a double return value.To have estimate () use the pam() function, you
pass pam () s address to it:

estimate (50, pam); // function call telling estimate() to use pam()

Clearly, the tricky part about using pointers to functions is writing the prototypes,
whereas passing the address 1s very simple.

Using a Pointer to Invoke a Function

Now we get to the final part of the technique, which is using a pointer to call the
pointed-to function. The clue comes in the pointer declaration. There, recall, (*p£) plays
the same role as a function name. Thus, all you have to do is use (*pf) as if it were a func-
tion name:

double pam(int) ;

double (*pf) (int);

pf = pam; // pf now points to the pam() function
double x = pam(4); // call pam() using the function name
double y = (*pf) (5); // call pam() using the pointer pf

363

364 Chapter 7 Functions: C++’s Programming Modules

Actually, C++ also allows you to use pf as if it were a function name:

double y = pf(5); // also call pam() using the pointer pf

Using the first form is uglier, but it provides a strong visual reminder that the code is
using a function pointer.

History Versus Logic

Holy syntax! How can pf and (*pf) be equivalent? One school of thought maintains that
because pf is a pointer to a function, *pf is a function; hence, you should use (*pf) () as
a function call. A second school maintains that because the name of a function is a pointer
to that function, a pointer to that function should act like the name of a function; hence you
should use pf () as a function call. C++ takes the compromise view that both forms are cor-
rect, or at least can be allowed, even though they are logically inconsistent with each other.
Before you judge that compromise too harshly, reflect that the ability to hold views that are
not logically self-consistent is a hallmark of the human mental process.

A Function Pointer Example

Listing 7.18 demonstrates using function pointers in a program. It calls the estimate ()
function twice, once passing the betsy () function address and once passing the pam ()
function address. In the first case, estimate () uses betsy () to calculate the number of
hours necessary, and in the second case, estimate () uses pam() for the calculation. This
design facilitates future program development. When Ralph develops his own algorithm
for estimating time, he doesn’t have to rewrite estimate (). Instead, he merely needs to
supply his own ralph() function, making sure it has the correct signature and return
type. Of course, rewriting estimate () isn’t a difficult task, but the same principle applies
to more complex code. Also the function pointer method allows Ralph to modify the
behavior of estimate (), even if he doesn’t have access to the source code for
estimate ().

Listing 7.18 fun ptr.cpp

// fun ptr.cpp -- pointers to functions
#include <iostream>

double betsy(int) ;

double pam(int) ;

// second argument is pointer to a type double function that
// takes a type int argument
void estimate(int lines, double (*pf) (int));

int main()
using namespace std;
int code;

cout << "How many lines of code do you need? ";
cin >> code;

cout << "Here's Betsy's estimate:\n";

estimate (code, betsy);

cout << "Here's Pam's estimate:\n";

estimate (code, pam);

return 0;

double betsy(int 1ns)

{

return 0.05 * 1lns;

double pam(int 1lns)

{

return 0.03 * Ins + 0.0004 * 1lns * 1lns;

void estimate(int lines, double (*pf) (int))
{
using namespace std;
cout << lines << " lines will take ";
cout << (*pf) (lines) << " hour(s)\n";

Pointers to Functions

Here is a sample run of the program in Listing 7.18:

How many lines of code do you need? 30
Here's Betsy's estimate:

30 lines will take 1.5 hour(s)

Here's Pam's estimate:

30 lines will take 1.26 hour(s)

Here is a second sample run of the program:

How many lines of code do you need? 100
Here's Betsy's estimate:

100 lines will take 5 hour(s)

Here's Pam's estimate:

100 lines will take 7 hour(s)

Variations on the Theme of Function Pointers

With function pointers, the notation can get intimidating. Let’s look at an example that
illustrates some of the challenges of function pointers and ways of dealing with them.To

begin, here are prototypes for some functions that share the same signature and return type:

365

366

Chapter 7 Functions: C++’s Programming Modules

const double * f1(const double ar[], int n);
const double * f2(const double [], int);
const double * f3(const double *, int);

The signatures might look different, but they are the same. First, recall that in a func-
tion prototype parameter list const double ar[] and const double * ar have exactly
the same meaning. Second, recall that in a prototype you can omit identifiers. Therefore,
const double ar[] can be reduced to const double [], and const double * ar can
be reduced to const double *.So all the function signatures shown previously have the
same meaning. Function definitions, on the other hand, do provide identifiers, so either
const double ar[] or const double * ar will serve in that context.

Next, suppose you wish to declare a pointer that can point to one of these three func-
tions. The technique, you’'ll recall, is if pa is the desired pointer, take the prototype for a
target function and replace the function name with (*pa):

const double * (*pl) (const double *, int);

This can be combined with initialization:

const double * (*pl) (const double *, int) = f1;

With the C++11 automatic type deduction feature, you can simplify this a bit:

auto p2 = f2; // C++11 automatic type deduction

Now consider the following statements:

cout << (*pl) (av,3) << ": " << *(*pl) (av,3) << endl;
cout << p2(av,3) << ": " << *p2(av,3) << endl;

Both (*p1) (av,3) and p2 (av, 3), recall, represent calling the pointed-to functions
(£1() and £2 (), in this case) with av and 3 as arguments. Therefore, what should print are
the return values of these two functions. The return values are type const double * (that
is, address of double values). So the first part of each cout expression should print the
address of a double value.To see the actual value stored at the addresses, we need to apply
the * operator to these addresses, and that’s what the expressions * (*p1) (av,3) and
*p2 (av,3) do.

With three functions to work with, it could be handy to have an array of function
pointers. Then one can use a for loop to call each function, via its pointer, in turn. What
would that look like? Clearly, it should look something like the declaration of a single
pointer, but there should be a [3] somewhere to indicate an array of three pointers. The
question is where. And here’s the answer (including initialization):

const double * (*pal3]) (const double *, int) = {f1,f2,£3};

Why put the [3] there? Well, pa is an array of three things, and the starting point for
declaring an array of three things is this: pa [3].The rest of the declaration is about what
kind of thing is to be placed in the array. Operator precedence ranks [] higher than *,so
*pa [3] says pa is an array of three pointers. The rest of the declaration indicates what
each pointer points to: a function with a signature of const double *, int and a return

Pointers to Functions

type of const double *.Hence, pa is an array of three pointers, each of which is a
pointer to a function that takes a const double * and int as arguments and returns a
const double *.

Can we use auto here? No. Automatic type deduction works with a single initializer
value, not an initialization list. But now that we have the array pa, it is simple to declare a
pointer of the matching type:

auto pb = pa;

The name of an array, as you’ll recall, is a pointer to its first element, so both pa and pb
are pointers to a pointer to a function.

How can we use them to call a function? Both pa[i] and pb[i] represent pointers in
the array, so you can use either of the function call notations with either of them:

const double * px = pal0] (av,3);
const double * py = (*pb[l]) (av,3);

And you can apply the * operator to get the pointed-to double value:

double x = *pal0] (av,3);
double y = *(*pb[1]) (av,3);

Something else you can do (and who wouldn’t want to?) is create a pointer to the
whole array. Because the array name pa already is a pointer to a function pointer, a pointer
to the array would be a pointer to a pointer to a pointer. This sounds intimidating, but
because the result can be initialed with a single value, you can use auto:

auto pc = &pa; // C++1ll automatic type deduction

What if you prefer to do it yourself? Clearly, the declaration should resemble the decla-
ration for pa, but because there is one more level of indirection, we’ll need one more *
stuck somewhere. In particular, if we call the new pointer pd, we need to indicate that it is
pointer, not an array name. This suggests the heart of the declaration should be (*pd) [3].
The parentheses bind the pd identifier to the *:

*pd [3] // an array of 3 pointers
(*pd) [3] // a pointer to an array of 3 elements

In other words, pd is a pointer, and it points to an array of three things. What those
things are is described by the rest of the original declaration of pa.This approach yields
the following:

const double * (* (*pd) [3]) (const double *, int) = &pa;

To call a function, realize that if pd points to an array, then *pd is the array and
(*pd) [i] is an array element, which is a pointer to a function. The simpler notation, then,
for the function call is (*pd) [1] (av,3),and * (*pd) [i] (av, 3) would be the value that
the returned pointer points to. Alternatively, you could use second syntax for invoking a
function with a pointer and use (* (*pd) [i]) (av,3) for the call and * (* (*pd) [11)
(av,3) for the pointed-to double value.

367

368

Chapter 7 Functions: C++’s Programming Modules

Be aware of the difference between pa, which as an array name is an address, and &pa.
As you’ve seen before, in most contexts pa is the address of the first element of the
array—that is, &pa [0] . Therefore, it is the address of a single pointer. But &pa is the address
of the entire array (that is, of a block of three pointers). Numerically, pa and spa may have
the same value, but they are of different types. One practical difference is that pa+1 is the
address of the next element in the array, whereas spa+1 is the address of the next block of
12 bytes (assuming addresses are 4 bytes) following the pa array. Another difference is that
you dereference pa once to get the value of the first element and you deference &pa twice
to get the same value:

**xgpa == *pa == pal0]

Listing 7.19 puts this discussion to use. For illustrative purposes, the functions £1 (), and
so on, have been kept embarrassingly simple. The program shows, as comments, the
C++98 alternatives to using auto.

Listing 7.19 arfupt.cpp

// arfupt.cpp -- an array of function pointers
#include <iostream>

// various notations, same signatures

const double * f1(const double ar[], int n);
const double * f2(const double [], int);

const double * f3(const double *, int);

int main()
{
using namespace std;
double av[3] = {1112.3, 1542.6, 2227.9};

// pointer to a function

const double *(*pl) (const double *, int) = £f1;

auto p2 = f2; // C++11 automatic type deduction

// pre-C++11l can use the following code instead

// const double *(*p2) (const double *, int) = f2;
cout << "Using pointers to functions:\n";

cout << " Address Value\n";

cout << (*pl) (av,3) << ": " << *(*pl) (av,3) << endl;
cout << p2(av,3) << ": " << *p2(av,3) << endl;

// pa an array of pointers

// auto doesn't work with list initialization

const double *(*pa[3]) (const double *, int) = {f1,f2,£3};
// but it does work for initializing to a single value

// pb a pointer to first element of pa

auto pb = pa;

// pre-C++11 can use the following code instead

Pointers to Functions

// const double *(**pb) (const double *, int) = pa;
cout << "\nUsing an array of pointers to functions:\n";
cout << " Address Value\n";
for (int 1 = 0; 1 < 3; 1i++)

cout << palil (av,3) << ": " << *pal[i] (av,3) << endl;
cout << "\nUsing a pointer to a pointer to a function:\n";
cout << " Address Value\n";
for (int 1 = 0; 1 < 3; 1++)

cout << pb[i] (av,3) << ": " << *pb[i] (av,3) << endl;

// what about a pointer to an array of function pointers
cout << "\nUsing pointers to an array of pointers:\n";
cout << " Address Value\n";

// easy way to declare pc

auto pc = &pa;

// pre-C++11 can use the following code instead

// const double *(*(*pc) [3]) (const double *, int) = &pa;
cout << (*pc) [0] (av,3) << ": " << *(*pc) [0] (av,3) << endl;
// hard way to declare pd

const double * (*(*pd) [3]) (const double *, int) = &pa;

// store return value in pdb
const double * pdb = (*pd) [1] (av,3);

cout << pdb << ": " << *pdb << endl;

// alternative notation

cout << (*(*pd) [2]) (av,3) << ": " << *(*(*pd) [2]) (av,3) << endl;
// cin.get();

return 0;

// some rather dull functions

const double * f1(const double * ar, int n)

return ar;

const double * f2(const double ar[], int n)

return ar+l;

const double * f3(const double ar[], int n)

return ar+2;

369

370

Chapter 7 Functions: C++’s Programming Modules

And here is the output:

Using pointers to functions:
Address Value
002AF9EO0: 1112.3
002AF9E8: 1542.6

Using an array of pointers to functions:
Address Value
002AF9EO: 1112.3
002AF9E8: 1542.6
002AF9F0: 2227.9

Using a pointer to a pointer to a function:
Address Value
002AF9EO: 1112.3
002AF9E8: 1542.6
002AF9F0: 2227.9

Using pointers to an array of pointers:
Address Value
002AF9EO: 1112.3
002AF9E8: 1542.6
002AF9F0: 2227.9

The addresses shown are the locations of the double values in the av array.

This example may seem esoteric, but pointers to arrays of pointers to functions are not
unheard of. Indeed, the usual implementation of virtual class methods (see Chapter 13,
“Class Inheritance”) uses this technique. Fortunately, the compiler handles the details.

Appreciating auto

One of the goals of C++11 is to make C++ easier to use, letting the programmer concen-
trate more on design and less on details. Listing 7.19 surely illustrates this point:

auto pc = &pa; // C++11 automatic type deduction
const double * (*(*pd) [3]) (const double *, int) = &pa; // C++98, do it yourself

The automatic type deduction feature reflects a philosophical shift in the role of the com-
piler. In C++98, the compiler uses its knowledge to tell you when you are wrong. In C++11,
at least with this feature, it uses its knowledge to help you get the right declaration.

There is a potential drawback. Automatic type deduction ensures that the type of the vari-
able matches the type of the initializer, but it still is possible that you might provide the
wrong type of initializer:

auto pc = *pa; // oops! used *pa instead of &pa

This declaration would make pc match the type of *pa, and that would result in a compile-
time error when Listing 7.19 later uses pc, assuming that it is of the same type as &pa.

Summary

Simplifying with typedef

C++ does provide tools other than auto for simplifying declarations.You may recall from
Chapter 5, “Loops and Relational Expressions,” that the typedef keyword allows you to
create a type alias:

typedef double real; // makes real another name for double

The technique is to declare the alias as if it were an identifier and to insert the key-
word typedef at the beginning. So you can do this to make p_£fun an alias for the func-
tion pointer type used in Listing 7.19:

typedef const double *(*p fun) (const double *, int); // p_fun now a type name
p_fun pl = f1; // pl points to the f1() function

You then can use this type to build elaborations:

p_fun pal3] = {fl,f2,f3}; // pa an array of 3 function pointers
p_fun (*pd) [3] = &pa; // pd points to an array of 3 function pointers

Not only does typedef save you some typing, it makes writing the code less error
prone, and it makes the program easier to understand.

Summary

Functions are the C++ programming modules. To use a function, you need to provide a
definition and a prototype, and you have to use a function call. The function definition is
the code that implements what the function does. The function prototype describes the
function interface: how many and what kinds of values to pass to the function and what
sort of return type, if any, to get from it. The function call causes the program to pass the
function arguments to the function and to transfer program execution to the function
code.

By default, C++ functions pass arguments by value. This means that the formal param-
eters in the function definition are new variables that are initialized to the values provided
by the function call. Thus, C++ functions protect the integrity of the original data by
working with copies.

C++ treats an array name argument as the address of the first element of the array.
Technically, this is still passing by value because the pointer is a copy of the original
address, but the function uses the pointer to access the contents of the original array.
When you declare formal parameters for a function (and only then), the following two
declarations are equivalent:
typeName arr[];
typeName * arr;

Both of these mean that arr is a pointer to typeName. When you write the function
code, however, you can use arr as if it were an array name in order to access elements:
arr [i]. Even when passing pointers, you can preserve the integrity of the original data
by declaring the formal argument to be a pointer to a const type. Because passing the

371

372

Chapter 7 Functions: C++’s Programming Modules

address of an array conveys no information about the size of the array, you normally pass
the array size as a separate argument. Alternatively, you can pass pointers to the beginning
of the array and to one position past the end to indicate a range, as do the algorithms in
the STL.

C++ provides three ways to represent C-style strings: by using a character array, a
string constant, or a pointer to a string. All are type char* (pointer-to-char), so they are
passed to a function as a type char* argument. C++ uses the null character (\0) to termi-
nate strings, and string functions test for the null character to determine the end of any
string they are processing.

C++ also provides the string class to represent strings. A function can accept string
objects as arguments and use a string object as a return value. The string class size ()
method can be used to determine the length of a stored string.

C++ treats structures the same as basic types, meaning that you can pass them by value
and use them as function return types. However, if a structure is large, it might be more
efficient to pass a pointer to the structure and let the function work with the original
data. These same considerations apply to class objects.

A C++ function can be recursive; that is, the code for a particular function can
include a call of itself.

The name of a C++ function acts as the address of the function. By using a function
argument that is a pointer to a function, you can pass to a function the name of a second
function that you want the first function to evoke.

Chapter Review

1. What are the three steps in using a function?

2. Construct function prototypes that match the following descriptions:
a. igor () takes no arguments and has no return value.
b. tofu() takes an int argument and returns a float.
c. mpg () takes two type double arguments and returns a double.

d. summation() takes the name of a long array and an array size as values and
returns a long value.

e. doctor () takes a string argument (the string is not to be modified) and
returns a double value.

f. ofcourse() takes a boss structure as an argument and returns nothing.

g. plot () takes a pointer to a map structure as an argument and returns a string.

11.

12.

13.

Chapter Review

Worite a function that takes three arguments: the name of an int array, the array
size, and an int value. Have the function set each element of the array to the int
value.

Write a function that takes three arguments: a pointer to the first element of a
range in an array, a pointer to the element following the end of a range in an array,
and an int value. Have the function set each element of the array to the int value.

Write a function that takes a double array name and an array size as arguments and
returns the largest value in that array. Note that this function shouldn’t alter the
contents of the array.

Why don’t you use the const qualifier for function arguments that are one of the
fundamental types?

What are the three forms a C-style string can take in a C++ program?

Write a function that has this prototype:

int replace(char * str, char cl, char c2);

Have the function replace every occurrence of c1 in the string str with ¢2, and
have the function return the number of replacements it makes.

What does the expression *"pizza" mean? What about "taco" [2]?

C++ enables you to pass a structure by value, and it lets you pass the address of a
structure. If glitz is a structure variable, how would you pass it by value? How
would you pass its address? What are the trade-offs of the two approaches?

The function judge () has a type int return value. As an argument, it takes the
address of a function. The function whose address is passed, in turn, takes a pointer
to a const char as an argument and returns an int. Write the function prototype.

Suppose we have the following structure declaration:

struct applicant {
char name[30] ;
int credit_ratingsI[3];

}i

a. Write a function that takes an applicant structure as an argument and dis-
plays its contents.

b. Write a function that takes the address of an applicant structure as an argu-
ment and displays the contents of the pointed-to structure.

Suppose the functions £1 () and £2 () have the following prototypes:

void fl(applicant * a);
const char * f2(const applicant * al, const applicant * a2);

373

374 Chapter 7 Functions: C++’s Programming Modules

Declare p1 as a pointer that points to £1 and p2 as a pointer to £2. Declare ap as an
array of five pointers of the same type as p1, and declare pa as a pointer to an array
of ten pointers of the same type as p2. Use typedef as an aid.

Programming Exercises

1. Write a program that repeatedly asks the user to enter pairs of numbers until at
least one of the pair is 0. For each pair, the program should use a function to calcu-
late the harmonic mean of the numbers. The function should return the answer to
main (), which should report the result. The harmonic mean of the numbers is the
inverse of the average of the inverses and can be calculated as follows:

harmonic mean = 2.0 Xx Xy / (x +y)

2. Write a program that asks the user to enter up to 10 golf scores, which are to be
stored in an array. You should provide a means for the user to terminate input prior
to entering 10 scores. The program should display all the scores on one line and
report the average score. Handle input, display, and the average calculation with
three separate array-processing functions.

3. Here is a structure declaration:

struct box

{

char maker[40];
float height;
float width;
float length;
float volume;

a. Write a function that passes a box structure by value and that displays the
value of each member.

b. Write a function that passes the address of a box structure and that sets the
volume member to the product of the other three dimensions.

c. Write a simple program that uses these two functions.

4. Many state lotteries use a variation of the simple lottery portrayed by Listing 7.4. In
these variations you choose several numbers from one set and call them the field
numbers. For example, you might select five numbers from the field of 1-47).You
also pick a single number (called a mega number or a power ball, etc.) from a sec-
ond range, such as 1-27.To win the grand prize, you have to guess all the picks cor-
rectly. The chance of winning is the product of the probability of picking all the
field numbers times the probability of picking the mega number. For instance, the

Programming Exercises 375

probability of winning the example described here is the product of the probability
of picking 5 out of 47 correctly times the probability of picking 1 out of 27 cor-
rectly. Modify Listing 7.4 to calculate the probability of winning this kind of lottery.

Define a recursive function that takes an integer argument and returns the factorial
of that argument. Recall that 3 factorial, written 3!, equals 3 X 2!, and so on, with 0!
defined as 1. In general, if n is greater than zero,n! = n * (n - 1)!. Test your function
in a program that uses a loop to allow the user to enter various values for which the
program reports the factorial.

Write a program that uses the following functions:

Fill array() takes as arguments the name of an array of double values and an
array size. It prompts the user to enter double values to be entered in the array. It
ceases taking input when the array is full or when the user enters non-numeric
input, and it returns the actual number of entries.

Show_array () takes as arguments the name of an array of double values and an
array size and displays the contents of the array.

Reverse_array () takes as arguments the name of an array of double values and an
array size and reverses the order of the values stored in the array.

The program should use these functions to fill an array, show the array, reverse the
array, show the array, reverse all but the first and last elements of the array, and then
show the array.

Redo Listing 7.7, modifying the three array-handling functions to each use two
pointer parameters to represent a range. The £i11_array () function, instead of
returning the actual number of items read, should return a pointer to the location
after the last location filled; the other functions can use this pointer as the second
argument to identify the end of the data.

Redo Listing 7.15 without using the array class. Do two versions:

a. Use an ordinary array of const char * for the strings representing the sea-
son names, and use an ordinary array of double for the expenses.

b. Use an ordinary array of const char * for the strings representing the sea-
son names, and use a structure whose sole member is an ordinary array of
double for the expenses. (This design is similar to the basic design of the
array class.)

This exercise provides practice in writing functions dealing with arrays and struc-
tures. The following is a program skeleton. Complete it by providing the described
functions:

#include <iostream>

using namespace std;

376 Chapter 7 Functions: C++’s Programming Modules

const int SLEN = 30;
struct student {
char fullname [SLEN] ;
char hobby [SLEN] ;
int ooplevel;
}i
// getinfo() has two arguments: a pointer to the first element of
// an array of student structures and an int representing the
// number of elements of the array. The function solicits and
// stores data about students. It terminates input upon filling
// the array or upon encountering a blank line for the student
// name. The function returns the actual number of array elements
// filled.
int getinfo(student pal]l, int n);

// displayl() takes a student structure as an argument
// and displays its contents
void displayl (student st);

// display2() takes the address of student structure as an
// argument and displays the structure’s contents
void display2(const student * ps);

// display3 () takes the address of the first element of an array
// of student structures and the number of array elements as

// arguments and displays the contents of the structures

void display3 (const student pal], int n);

int main()
{
cout << “Enter class size: “;
int class_size;
cin >> class_size;
while (cin.get() != '\n’)
continue;

student * ptr stu = new student[class_size];
int entered = getinfo(ptr stu, class_size);
for (int 1 = 0; 1 < entered; i++)
{
displayl (ptr_stuli]);
display2 (&ptr_stulil);
}
display3 (ptr_stu, entered);
delete [] ptr_stu;
cout << “Done\n”;
return 0;

Programming Exercises 377

10. Design a function calculate () that takes two type double values and a pointer to
a function that takes two double arguments and returns a double.The
calculate () function should also be type double, and it should return the value
that the pointed-to function calculates, using the double arguments to
calculate (). For example, suppose you have this definition for the add ()
function:
double add(double x, double y)

{

return x + y;

Then, the function call in the following would cause calculate () to pass the val-
ues 2.5 and 10.4 to the add () function and then return the add () return value
(12.9):

double g = calculate(2.5, 10.4, add);

Use these functions and at least one additional function in the add() mold in a
program. The program should use a loop that allows the user to enter pairs of num-
bers. For each pair, use calculate () to invoke add () and at least one other func-
tion. If you are feeling adventurous, try creating an array of pointers to add () -style
functions and use a loop to successively apply calculate () to a series of functions
by using these pointers. Hint: Here’s how to declare such an array of three pointers:
double (*pf[3]) (double, double);

You can initialize such an array by using the usual array initialization syntax and
function names as addresses.

This page intentionally left blank

3

Adventures in Functions

In this chapter you’ll learn about the following:

= Inline functions

= Reference variables

= How to pass function arguments by reference
= Default arguments

= Function overloading

= Function templates

= Function template specializations

With Chapter 7, “Functions: C++’s Programming Modules,” under your belt, you now
know a lot about C++ functions, but there’s much more to come. C++ provides many
new function features that separate C++ from its C heritage. The new features include
inline functions, by-reference variable passing, default argument values, function overload-
ing (polymorphism), and template functions. This chapter, more than any other you’ve
read so far, explores features found in C++ but not C, so it marks your first major foray
into plus-plussedness.

C++ Inline Functions

Inline functions are a C++ enhancement designed to speed up programs. The primary dis-
tinction between normal functions and inline functions is not in how you code them but
in how the C++ compiler incorporates them into a program.To understand the distinc-
tion between inline functions and normal functions, you need to peer more deeply into a
program’s innards than we have so far. Let’s do that now.

The final product of the compilation process is an executable program, which consists
of a set of machine language instructions. When you start a program, the operating system
loads these instructions into the computer’s memory so that each instruction has a partic-
ular memory address. The computer then goes through these instructions step-by-step.
Sometimes, as when you have a loop or a branching statement, program execution skips

380

Chapter 8 Adventures in Functions

over instructions, jumping backward or forward to a particular address. Normal function
calls also involve having a program jump to another address (the function’s address) and
then jump back when the function terminates. Let’s look at a typical implementation of
that process in a little more detail. When a program reaches the function call instruction,
the program stores the memory address of the instruction immediately following the
function call, copies function arguments to the stack (a block of memory reserved for that
purpose), jumps to the memory location that marks the beginning of the function, exe-
cutes the function code (perhaps placing a return value in a register), and then jumps
back to the instruction whose address it saved.! Jumping back and forth and keeping track
of where to jump means that there is an overhead in elapsed time to using functions.

C++ inline functions provide an alternative. In an inline function, the compiled code
is “in line” with the other code in the program.That is, the compiler replaces the function
call with the corresponding function code. With inline code, the program doesn’t have to
jump to another location to execute the code and then jump back. Inline functions thus
run a little faster than regular functions, but they come with a memory penalty. If a pro-
gram calls an inline function at ten separate locations, then the program winds up with
ten copies of the function inserted into the code (see Figure 8.1).

You should be selective about using inline functions. If the time needed to execute the
function code is long compared to the time needed to handle the function call mecha-
nism, then the time saved is a relatively small portion of the entire process. If the code
execution time is short, then an inline call can save a large portion of the time used by
the non-inline call. On the other hand, you are now saving a large portion of a relatively
quick process, so the absolute time savings may not be that great unless the function is
called frequently.

To use this feature, you must take at least one of two actions:

= Preface the function declaration with the keyword inline.

= Preface the function definition with the keyword inline.

A common practice is to omit the prototype and to place the entire definition
(meaning the function header and all the function code) where the prototype would
normally go.

The compiler does not have to honor your request to make a function inline. It might
decide the function is too large or notice that it calls itself (recursion is not allowed or
indeed possible for inline functions), or the feature might not be turned on or imple-
mented for your particular compiler.

1 1t’s a bit like having to leave off reading some text to find out what a footnote says and then, upon
finishing the footnote, returning to where you were reading in the text.

C++ Inline Functions 381

int main()

int main() {
{
hubba (2); «——m n = 2;
v for (int 1 = 0; i < n; i++)
hubba (4); «———— cout << "hubba! ";
.. cout << "\n";
hubba (10); «———— }
} {
n = 4;

for (int 1 = 0; 1 < n; i++)
cout << "hubba! ";
cout << "\n";

}

{

n=10;

for (int 1 = 0; i < n; i++)
cout << "hubba! ";

cout << "\n";

'y }

void hubba(int n) }...

{

for (int 1 = 0; 1 < n; i++)
cout << "hubba! ";

cout << "\n";

A regular function transfers program An inline function replaces a
execution to a separate function. function call with inline code.

Figure 8.1 Inline functions versus regular functions.

Listing 8.1 illustrates the inline technique with an inline square () function that
squares its argument. Note that the entire definition is on one line. That’s not required,
but if the definition doesn’t fit on one or two lines (assuming you don’t have lengthy
identifiers), the function is probably a poor candidate for an inline function.

Listing 8.1 inline.cpp

// inline.cpp -- using an inline function
#include <iostreams>

// an inline function definition
inline double square(double x) { return x * x; }

int main()

{

382 Chapter 8 Adventures in Functions

using namespace std;
double a, b;
double ¢ = 13.0;

a = square(5.0);

b = square(4.5 + 7.5); // can pass expressions
cout << "a = " << a<< ", b="<<b<< "\n";
cout << "c = " << ¢;

cout << ", ¢ squared = " << square(c++) << "\n";
cout << "Now ¢ = " << ¢ << "\n";

return 0;

Here’s the output of the program in Listing 8.1:
a =25 b= 144

¢ = 13, c squared = 169
Now ¢ = 14

This output illustrates that inline functions pass arguments by value just like regular
functions do. If the argument is an expression, such as 4.5 + 7.5, the function passes the
value of the expression—12 in this case. This makes C++’s inline facility far superior to
C’s macro definitions. See the “Inline Versus Macros” sidebar.

Even though the program doesn’t provide a separate prototype, C++’s prototyping
features are still in play. That’s because the entire definition, which comes before the func-
tion’s first use, serves as a prototype. This means you can use square () with an int argu-
ment or a long argument, and the program automatically type casts the value to type
double before passing it to the function.

Inline Versus Macros

The inline facility is an addition to C++. C uses the preprocessor #define statement to
provide macros, which are crude implementations of inline code. For example, here’s a
macro for squaring a number:

#define SQUARE (X) X*X

This works not by passing arguments but through text substitution, with the x acting as a
symbolic label for the “argument”:

a = SQUARE(5.0); is replaced by a = 5.0*%5.0;
b = SQUARE(4.5 + 7.5); is replaced by b = 4.5 + 7.5 * 4.5 + 7.5;
d = SQUARE (c++); is replaced by d = c++*c++;

Only the first example here works properly. You can improve matters with a liberal applica-
tion of parentheses:

#define SQUARE (X) ((X)* (X))

Reference Variables

Still, the problem remains that macros don’t pass by value. Even with this new definition,
SQUARE (c++) increments c twice, but the inline square () function in Listing 8.1 evaluates
c, passes that value to be squared, and then increments c once.

The intent here is not to show you how to write C macros. Rather, it is to suggest that if you
have been using C macros to perform function-like services, you should consider converting
them to C++ inline functions.

Reference Variables

C++ adds a new compound type to the language—the reference variable. A reference is a
name that acts as an alias, or an alternative name, for a previously defined variable. For
example, if you make twain a reference to the clemens variable, you can use twain and
clemens interchangeably to represent that variable. Of what use is such an alias? Is it to
help people who are embarrassed by their choice of variable names? Maybe, but the main
use for a reference variable is as a formal argument to a function. If you use a reference as
an argument, the function works with the original data instead of with a copy. References
provide a convenient alternative to pointers for processing large structures with a func-
tion, and they are essential for designing classes. Before you see how to use references with
functions, however, let’s examine the basics of defining and using a reference. Keep in
mind that the purpose of the following discussion is to illustrate how references work, not
how they are typically used.

Creating a Reference Variable

You might recall that C and C++ use the & symbol to indicate the address of a variable.
C++ assigns an additional meaning to the & symbol and presses it into service for declar-
ing references. For example, to make rodents an alternative name for the variable rats,
you could do the following:

int rats;
int & rodents = rats; // makes rodents an alias for rats

In this context, & is not the address operator. Instead, it serves as part of the type identi-
fier. Just as char * in a declaration means pointer-to-char, int & means reference-to-
int.The reference declaration allows you to use rats and rodents interchangeably; both
refer to the same value and the same memory location. Listing 8.2 illustrates the truth of
this claim.

Listing 8.2 firstref.cpp

// firstref.cpp -- defining and using a reference
#include <iostream>
int main()
{
using namespace std;
int rats = 101;
int & rodents = rats; // rodents is a reference

383

384

Chapter 8 Adventures in Functions

cout << "rats = " << rats;

cout << ", rodents = " << rodents << endl;
rodents++;

cout << "rats = " << rats;

cout << ", rodents = " << rodents << endl;

// some implementations require type casting the following
// addresses to type unsigned

cout << "rats address = " << &rats;
cout << ", rodents address = " << &rodents << endl;
return 0;

Note that the & operator in the following statement is not the address operator but
declares that rodents is of type int & (that is, it is a reference to an int variable):

int & rodents = rats;
But the & operator in the next statement is the address operator, with &rodents repre-
senting the address of the variable to which rodents refers:

cout <<", rodents address = " << &rodents << endl;

Here is the output of the program in Listing 8.2:

rats = 101, rodents = 101
rats = 102, rodents = 102
rats address = 0x0065fd48, rodents address = 0x0065f£d48

As you can see, both rats and rodents have the same value and the same address.
(The address values and display format vary from system to system.) Incrementing
rodents by one affects both variables. More precisely, the rodents++ operation incre-
ments a single variable for which there are two names. (Again, keep in mind that although
this example shows you how a reference works, it doesn’t represent the typical use for a
reference, which is as a function parameter, particularly for structure and object argu-
ments. We’ll look into these uses pretty soon.)

References tend to be a bit confusing at first to C veterans coming to C++ because
they are tantalizingly reminiscent of pointers, yet somehow difterent. For example, you can
create both a reference and a pointer to refer to rats:
int rats = 101;
int & rodents = rats; // rodents a reference
int * prats = &rats; // prats a pointer

Then you could use the expressions rodents and *prats interchangeably with rats
and use the expressions &rodents and prats interchangeably with srats. From this
standpoint, a reference looks a lot like a pointer in disguised notation in which the *
dereferencing operator is understood implicitly. And, in fact, that’s more or less what a
reference is. But there are differences besides those of notation. For one, it is necessary to

Reference Variables

initialize the reference when you declare it; you can’t declare the reference and then assign
it a value later the way you can with a pointer:

int rat;
int & rodent;
rodent = rat; // No, you can't do this.

Note
You should initialize a reference variable when you declare it.
A reference is rather like a const pointer; you have to initialize it when you create it,

and when a reference pledges its allegiance to a particular variable, it sticks to its pledge.
That is,

int & rodents = rats;

is, in essence, a disguised notation for something like this:

int * const pr = &rats;

Here, the reference rodents plays the same role as the expression *pr.
Listing 8.3 shows what happens if you try to make a reference change allegiance from a
rats variable to a bunnies variable.

Listing 8.3 secref.cpp

// secref.cpp -- defining and using a reference
#include <iostream>
int main()

using namespace std;

int rats = 101;

int & rodents = rats; // rodents is a reference
cout << "rats = " << rats;

cout << ", rodents = " << rodents << endl;

cout << "rats address = " << &rats;

cout << ", rodents address = " << &rodents << endl;

int bunnies = 50;

rodents = bunnies; // can we change the reference?
cout << "bunnies = " << bunnies;

cout << ", rats = " << rats;

cout << ", rodents = " << rodents << endl;

cout << "bunnies address = " << &bunnies;

cout << ", rodents address = " << &rodents << endl;

return 0;

385

386

Chapter 8 Adventures in Functions

Here’s the output of the program in Listing 8.3:
rats = 101, rodents = 101
rats address = 0x0065fd44, rodents address = 0x0065fd44
bunnies = 50, rats = 50, rodents = 50
bunnies address = 0x0065fd48, rodents address = 0x0065fd4

Initially, rodents refers to rats, but then the program apparently attempts to make
rodents a reference to bunnies:

rodents = bunnies;

For a moment, it looks as if this attempt has succeeded because the value of rodents
changes from 101 to 50. But closer inspection reveals that rats also has changed to 50 and
that rats and rodents still share the same address, which differs from the bunnies
address. Because rodents is an alias for rats, the assignment statement really means the
same as the following:

rats = bunnies;

That is, it means “Assign the value of the bunnies variable to the rat variable.” In

short, you can set a reference by an initializing declaration, not by assignment.
Suppose you tried the following:

int rats = 101;

int * pt = &rats;

int & rodents = *pt;

int bunnies = 50;

pt = &bunnies;

Initializing rodents to *pt makes rodents refer to rats. Subsequently altering pt to
point to bunnies does not alter the fact that rodents refers to rats.

References as Function Parameters

Most often, references are used as function parameters, making a variable name in a func-
tion an alias for a variable in the calling program.This method of passing arguments is
called passing by reference. Passing by reference allows a called function to access variables in
the calling function. C++’s addition of the feature is a break from C, which only passes by
value. Passing by value, recall, results in the called function working with copies of values
from the calling program (see Figure 8.2). Of course, C lets you get around the passing by
value limitation by using pointers.

Let’s compare using references and using pointers in a common computer problem:
swapping the values of two variables. A swapping function has to be able to alter values of
variables in the calling program.That means the usual approach of passing variables by
value won’t work because the function will end up swapping the contents of copies of the
original variables instead of the variables themselves. If you pass references, however, the
function can work with the original data. Alternatively, you can pass pointers in order to
access the original data. Listing 8.4 shows all three methods, including the one that doesn’t
work, so that you can compare them.

Reference Variables 387

Passing by value
void sneezy(int x);
int main()
creates a variable

——> called times, assigns 20
it the value of 20

int times = 20;
sneezy(times);

} o times .
two variables,
void sneezy(int x) two names
creates a variable /
ca —» called x, assigns it 20
} the passed value of 20
X

Passing by reference
void grumpy(int &x);
int main()
creates a variable
—> called times, assigns | op

it the value of 20
} times, x

one variable,
two names

int times = 20;
grumpy (times);

void grumpy(int &x)
{

makes x an

} o > alias for times

Figure 8.2 Passing by value and passing by reference.

Listing 8.4 swaps.cpp

// swaps.cpp -- swapping with references and with pointers
#include <iostream>

void swapr(int & a, int & b); // a, b are aliases for ints
void swapp(int * p, int * q); // p, q are addresses of ints
void swapv(int a, int b); // a, b are new variables

int main()

{

using namespace std;
int walletl = 300;
int wallet2 = 350;

388 Chapter 8 Adventures in Functions

cout << "walletl = $" << walletl;
cout << " wallet2 = $" << wallet2 << endl;

cout << "Using references to swap contents:\n";
swapr (walletl, wallet2); // pass variables
cout << "walletl = $" << walletl;

cout << " wallet2 = $" << wallet2 << endl;

cout << "Using pointers to swap contents again:\n";

swapp (&walletl, &wallet2); // pass addresses of variables
cout << "walletl = $" << walletl;

cout << " wallet2 = $" << wallet2 << endl;

cout << "Trying to use passing by value:\n";

swapv (walletl, wallet2); // pass values of variables
cout << "walletl = $" << walletl;

cout << " wallet2 = $" << wallet2 << endl;

return 0;
1
void swapr(int & a, int & b) // use references
{
int temp;
temp = a; // use a, b for values of variables
a = b;
b = temp;
1
void swapp(int * p, int * q) // use pointers
{
int temp;
temp = *p; // use *p, *q for values of variables
*P = *Qi
*q = temp;
1
void swapv(int a, int b) // try using values
{
int temp;
temp = a; // use a, b for values of variables
a = b;
b = temp;

Reference Variables

Here’s the output of the program in Listing 8.4:

walletl = $300 wallet2 = $350 << original values
Using references to swap contents:

walletl = $350 wallet2 = $300 << values swapped
Using pointers to swap contents again:

walletl = $300 wallet2 = $350 << values swapped again
Trying to use passing by value:

walletl = $300 wallet2 = $350 << swap failed

As you’d expect, the reference and pointer methods both successfully swap the contents
of the two wallets, whereas the passing by value method fails.

Program Notes
First, note how each function in Listing 8.4 is called:

swapr (walletl, wallet2); // pass variables
swapp (&walletl, &wallet2); // pass addresses of variables
swapv (walletl, wallet2); // pass values of variables

Passing by reference (swapr (walletl, wallet2)) and passing by value
(swapv (walletl, wallet2)) look identical. The only way you can tell that swapr ()
passes by reference is by looking at the prototype or the function definition. However, the
presence of the address operator (&) makes it obvious when a function passes by address
((swapp (&walletl, swallet2)).(Recall that the type declaration int *p means that p is
a pointer to an int and therefore the argument corresponding to p should be an address,
such as swalletl.)

Next, compare the code for the functions swapr () (passing by reference) and swapv ()
(passing by value). The only outward difference between the two is how the function
parameters are declared:
void swapr(int & a, int & b)
void swapv(int a, int b)

The internal difference, of course, is that in swapr () the variables a and b serve as
aliases for walletl and wallet2, so swapping a and b swaps walletl and wallet2. But in
swapv (), the variables a and b are new variables that copy the values of wallet1 and
wallet2,so swapping a and b has no effect on walletl and wallet2.

Finally, compare the functions swapr () (passing a reference) and swapp () (passing a
pointer). The first difference is in how the function parameters are declared:
void swapr(int & a, int & b)
void swapp(int * p, int * q)

The second difterence is that the pointer version requires using the * dereferencing
operator throughout when the function uses p and q.

Earlier, I said you should initialize a reference variable when you define it. A function
call initializes its parameters with argument values from the function call. So reference
function arguments are initialized to the argument passed by the function call. That s, the

389

390

Chapter 8 Adventures in Functions

following function call initializes the formal parameter a to walletl and the formal
parameter b to wallet2:

swapr (walletl, wallet2);

Reference Properties and Oddities

Using reference arguments has several twists you need to know about. First, consider
Listing 8.5. It uses two functions to cube an argument. One takes a type double argu-
ment, and the other takes a reference to double.The actual code for cubing is purpose-
fully a bit odd to illustrate a point.

Listing 8.5 cubes.cpp

// cubes.cpp -- regular and reference arguments
#include <iostream>
double cube (double a);
double refcube (double &ra);
int main ()
{
using namespace std;
double x = 3.0;

cout << cube(x);

cout << " = cube of " << x << endl;
cout << refcube (x);

cout << " = cube of " << X << endl;

return 0;

double cube (double a)

{
a *= a * a;

return a;

double refcube (double &ra)

ra *= ra * ra;

return ra;

Here is the output of the program in Listing 8.5:

27 = cube of 3
27 = cube of 27

Reference Variables

Note that the refcube () function modifies the value of x in main () and cube ()
doesn’t, which reminds you why passing by value is the norm.The variable a is local to
cube (). It is initialized to the value of x, but changing a has no effect on x. But because
refcube () uses a reference argument, the changes it makes to ra are actually made to x. If
your intent is that a function use the information passed to it without modifying the
information, and if you’re using a reference, you should use a constant reference. Here, for
example, you should use const in the function prototype and function header:

double refcube (const double &ra);

If you do this, the compiler generates an error message when it finds code altering the
value of ra.

Incidentally, if you need to write a function along the lines of this example (that is,
using a basic numeric type), you should use passing by value rather than the more exotic
passing by reference. Reference arguments become useful with larger data units, such as
structures and classes, as you’ll soon see.

Functions that pass by value, such as the cube () function in Listing 8.5, can use many
kinds of actual arguments. For example, all the following calls are valid:

double z = cube(x + 2.0); // evaluate x + 2.0, pass value

z = cube(8.0); // pass the value 8.0

int k = 10;

z = cube (k) ; // convert value of k to double, pass value
double yo[3] = { 2.2, 3.3, 4.4};

z = cube (yol[2]); // pass the value 4.4

Suppose you try similar arguments for a function with a reference parameter. It would
seem that passing a reference should be more restrictive. After all, if ra is the alternative
name for a variable, then the actual argument should be that variable. Something like the
following doesn’t appear to make sense because the expression x + 3.0 is not a variable:

double z = refcube(x + 3.0); // should not compile

For example, you can’t assign a value to such an expression:

x + 3.0 = 5.0; // nonsensical

What happens if you try a function call like refcube (x + 3.0)? In contemporary
C++, that’s an error, and most compilers will tell you so. Some older ones give you a
warning along the following lines:

Warning: Temporary used for parameter 'ra' in call to refcube (double &)

The reason for this milder response is that C++, in its early years, did allow you to pass
expressions to a reference variable. In some cases, it still does. What happens is that because
x + 3.0 1s not a type double variable, the program creates a temporary, nameless variable,
initializing it to the value of the expression x + 3.0.Then ra becomes a reference to that
temporary variable. Let’s take a closer look at temporary variables and see when they are
and are not created.

391

392

Chapter 8 Adventures in Functions

Temporary Variables, Reference Arguments, and const
C++ can generate a temporary variable if the actual argument doesn’t match a reference
argument. Currently, C++ permits this only if the argument is a const reference, but this
was not always the case. Let’s look at the cases in which C++ does generate temporary
variables and see why the restriction to a const reference makes sense.

First, when is a temporary variable created? Provided that the reference parameter is a
const, the compiler generates a temporary variable in two kinds of situations:

= When the actual argument is the correct type but isn’t an lvalue

= When the actual argument is of the wrong type, but it’s of a type that can be con-
verted to the correct type

What is an Ivalue? An argument that’s an lvalue is a data object that can be referenced
by address. For example, a variable, an array element, a structure member, a reference, and
a dereferenced pointer are lvalues. Non-lvalues include literal constants (aside from quoted
strings, which are represented by their addresses) and expressions with multiple terms. The
term [value in C originally meant entities that could appear on the left side of an assign-
ment statement, but that was before the const keyword was introduced. Now both a reg-
ular variable and a const variable would be considered Ivalues because both can be
accessed by address. But the regular variable can be further characterized as being a
modifiable lvalue and the const variable as a non-modifiable lvalue.

Now, to return to our example, suppose you redefine refcube () so that it has a con-
stant reference argument:

double refcube (const double &ra)

{

return ra * ra * ra;

Next, consider the following code:

double side = 3.0;

double * pd = &side;

double & rd = side;

long edge = 5L;

double lens[4] = { 2.0, 5.0, 10.0, 12.0};
)i

double cl1 = refcube (side // ra is side

double c2 = refcube(lens[2]); // ra is lens|[2]

double c¢3 = refcube (rd) ; // ra is rd is side

double c4 = refcube (*pd) ; // ra is *pd is side

double c5 = refcube (edge) ; // ra is temporary variable
double c6 = refcube(7.0); // ra is temporary variable
double c7 = refcube(51de + 10.0); // ra is temporary variable

The arguments side, lens [2], rd, and *pd are type double data objects with names, so
it is possible to generate a reference for them, and no temporary variables are needed.
(Recall that an element of an array behaves like a variable of the same type as the

Reference Variables

element.) But although edge is a variable, it is of the wrong type. A reference to a double
can’t refer to a long.The arguments 7.0 and side + 10.0, on the other hand, are the
right type, but they are not named data objects. In each of these cases, the compiler gener-
ates a temporary, anonymous variable and makes ra refer to it. These temporary variables
last for the duration of the function call, but then the compiler is free to dump them.

So why is this behavior okay for constant references but not otherwise? Recall the
swapr () function from Listing 8.4:

void swapr(int & a, int & b) // use references

{

int temp;

temp = a; // use a, b for values of variables
a = Db;
b = temp;

‘What would happen if you did the following under the freer rules of early C++?

long a = 3, b = 5;
swapr (a, b);

Here there is a type mismatch, so the compiler would create two temporary int vari-
ables, initialize them to 3 and 5, and then swap the contents of the temporary variables,
leaving a and b unaltered.

In short, if the intent of a function with reference arguments is to modify variables
passed as arguments, situations that create temporary variables thwart that purpose. The
solution is to prohibit creating temporary variables in these situations, and that is what the
C++ Standard now does. (However, some compilers still, by default, issue warnings instead
of error messages, so if you see a warning about temporary variables, don’t ignore it.)

Now think about the refcube () function. Its intent is merely to use passed values, not
to modify them, so temporary variables cause no harm and make the function more gen-
eral in the sorts of arguments it can handle. Therefore, if the declaration states that a refer-
ence is const, C++ generates temporary variables when necessary. In essence, a C++
function with a const reference formal argument and a nonmatching actual argument
mimics the traditional passing by value behavior, guaranteeing that the original data is
unaltered and using a temporary variable to hold the value.

Note

If a function call argument isn’t an 1value or does not match the type of the corresponding
const reference parameter, C++ creates an anonymous variable of the correct type, assigns
the value of the function call argument to the anonymous variable, and has the parameter
refer to that variable.

393

394

Chapter 8 Adventures in Functions

Use const When You Can
There are three strong reasons to declare reference arguments as references to constant data:
= Using const protects you against programming errors that inadvertently alter data.

= Using const allows a function to process both const and non-const actual argu-
ments, whereas a function that omits const in the prototype only can accept non-
const data.

= Using a const reference allows the function to generate and use a temporary variable
appropriately.

You should declare formal reference arguments as const whenever it’'s appropriate to do so.

C++11 introduces a second kind of reference, called an rvalue reference, that can refer to
an rvalue. It’s declared using &&:

double && rref = std::sqrt(36.00); // not allowed for double &
double j = 15.0;

double && jref = 2.0* j + 18.5; // not allowed for double &
std::cout << rref << '\n'; // display 6.0
std::cout << jref << '"\n'; // display 48.5;

The rvalue reference was introduced mainly to help library designers provide more
efficient implementations of certain operations. Chapter 18,“Visiting will the New C++
Standard,” discusses how rvalue references are used to implement an approach called move
semantics. The original reference type (the one declared using a single &) is now called an
lvalue reference.

Using References with a Structure

References work wonderfully with structures and classes, C++’s user-defined types.
Indeed, references were introduced primarily for use with these types, not for use with the
basic built-in types.

The method for using a reference to a structure as a function parameter is the same as
the method for using a reference to a basic variable:You just use the & reference operator
when declaring a structure parameter. For example, suppose we have the following defini-
tion of a structure:

struct free throws

{
std::string name;
int made;
int attempts;
float percent;

}i
Then a function using a reference to this type could be prototyped as follows:

void set pc(free_throws & ft); // use a reference to a structure

If the intent is that the function doesn’t alter the structure, use const:

void display (const free throws & ft); // don't allow changes to structure

Reference Variables

The program in Listing 8.6 does exactly these things. It also adds an interesting twist by
having a function return a reference to the structure. This works a bit differently from
returning a structure. There are some cautions to note, which we’ll get to shortly.

Listing 8.6 strc_ref.cpp

//strc_ref.cpp -- using structure references
#include <iostream>
#include <string>
struct free_throws
{
std::string name;
int made;
int attempts;
float percent;

}i

void display(const free throws & ft);
void set pc(free throws & ft);
free throws & accumulate(free throws & target, const free throws & source);

int main()

{

// partial initializations - remaining members set to 0
free throws one = {"Ifelsa Branch", 13, 14};
free throws two = {"Andor Knott", 10, 16};
free throws three = {"Minnie Max", 7, 9};
free throws four = {"Whily Looper", 5, 9};
free throws five = {"Long Long", 6, 14};
free throws team = {"Throwgoods", 0, 0};

// no initialization
free_throws dup;

set_pc (one) ;
display (one) ;
accumulate (team, one);
display (team) ;
// use return value as argument
display(accumulate (team, two));
accumulate (accumulate (team, three), four);
display (team) ;
// use return value in assignment
dup = accumulate (team, five);
std::cout << "Displaying team:\n";
display (team) ;
std::cout << "Displaying dup after assignment:\n";
display (dup) ;

395

396 Chapter 8 Adventures in Functions

set_pc (four) ;
// ill-advised assignment
accumulate (dup, five) = four;
std::cout << "Displaying dup after ill-advised assignment:\n";
display (dup) ;
return 0;

void display(const free throws & ft)
{
using std::cout;
cout << "Name: " << ft.name << '\n';
cout << " Made: " << ft.made << '\t';
cout << "Attempts: " << ft.attempts << '\t';
cout << "Percent: " << ft.percent << '\n';

}

void set pc(free throws & ft)

{
if (ft.attempts != 0)
ft.percent = 100.0f *float (ft.made)/float (ft.attempts);
else
ft.percent = 0;
}
free_throws & accumulate (free_throws & target, const free throws & source)
{
target.attempts += source.attempts;
target.made += source.made;
set_pc (target) ;
return target;
}

Here is the program output:

Name: Ifelsa Branch

Made: 13 Attempts: 14 Percent: 92.8571
Name: Throwgoods

Made: 13 Attempts: 14 Percent: 92.8571
Name: Throwgoods

Made: 23 Attempts: 30 Percent: 76.6667
Name: Throwgoods

Made: 35 Attempts: 48 Percent: 72.9167

Displaying team:
Name: Throwgoods
Made: 41 Attempts: 62 Percent: 66.129
Displaying dup after assignment:
Name: Throwgoods

Reference Variables

Made: 41 Attempts: 62 Percent: 66.129
Displaying dup after ill-advised assignment:
Name: Whily Looper

Made: 5 Attempts: 9 Percent: 55.5556

Program Notes

The program begins by initializing several structure objects. Recall that if there are fewer
initializers than members, the remaining members (just the percent members in this case)
are set to 0.The first function call is this:

set_pc(one) ;

Because the formal parameter £t in set_pc () is a reference, £t refers to one, and the
code in set_pc () sets the one.percent member. Passing by value would not work in this
case because that would result in setting the percent member of a temporary copy of
one. The alternative, as you may recall from the previous chapter, is using a pointer param-
eter and passing an address, but the form is slightly more complicated:

set_pcp (&one) ; // using pointers instead - &one instead of one

void set pcp(free throws * pt)
{
if (pt->attempts != 0)
pt->percent = 100.0f *float (pt->made)/float (pt->attempts) ;
else
pt->percent = 0;

The next function call is this:

display (one) ;

Because display () displays the contents of the structure without altering them, the
function uses a const reference parameter. In this case, one could have passed the struc-
ture by value, but using a reference is more economical in time and memory than making
a copy of the original structure.

The next function call is this:

accumulate (team, one);
The accumulate () function takes two structure arguments. It adds data from the
attempts and made members of the second structure to the corresponding members of

the first structure. Only the first structure is modified, so the first parameter is a reference,
whereas the second parameter is a const reference:

free throws & accumulate(free throws & target, const free throws & source);

397

398

Chapter 8 Adventures in Functions

What about the return value? The function call we just discussed didn’t use it; as far as
that use went, the function could have been type void. But look at this function call:

display (accumulate (team, two));
‘What’s going on here? Let’s follow the structure object team. First, team is passed to
accumulate () as its first argument. That means that the target object in accumulate ()

really is team. The accumulate () function modifies team, then returns it as a reference.
Note that the actual return statement looks like this:

return target;

Nothing in this statement indicates that a reference is being returned. That information
comes from the function header (and, also, from the prototype):
free throws & accumulate(free throws & target, const free throws & source)

If the return type were declared free_ throws instead of free_throws &, the same
return statement would return a copy of target (and hence a copy of team). But the
return type is a reference, so that means the return value is the original team object first
pa%edto accumulate ().

‘What happens next? The accumulate () return value is the first argument to
display (), so that means team is the first argument to display (). Because the

display () parameter is a reference, that means the £t object in display () really is team.
Therefore, the contents of team get displayed. The net effect of

display(accumulate (team, two));

is the same as that of the following:
accumulate (team, two) ;
display (team) ;

The same logic applies to this statement:

accumulate (accumulate (team, three), four);

This has the same effect as the following:
accumulate (team, three);
accumulate (team, four);
Next, the program uses an assignment statement:
dup = accumulate (team, five);
As you might expect, this copies the values in team to dup.
Finally, the program uses accumulate () in a manner for which it was not intended:
accumulate (dup, five) = four;
This statement—that is, assigning a value to a function call—works because the return

value is a reference. The code won’t compile if accumulate () returns by value. Because
the return value is a reference to dup, this code has the same effect as the following:

Reference Variables

accumulate (dup, five); // add five's data to dup
dup = four; // overwrite the contents of dup with the contents of four

The second statement wipes out the work accomplished by the first, so the original
assignment statement was not a good use of accumulate ().

Why Return a Reference?

Let’s look a bit further at how returning a reference is different from the traditional return
mechanism. The latter works much like passing by value does with function parameters.
The expression following the return is evaluated, and that value is passed back to the call-
ing function. Conceptually, this value is copied to a temporary location and the calling
program uses the value. Consider the following:

double m = sqrt(16.0);
cout << sqgrt(25.0);

In the first statement, the value 4.0 is copied to a temporary location and then the value
in that location is copied to m. In the second statement, the value 5.0 is copied to a tempo-
rary location, then the contents of that location are passed on to cout. (This is the concep-
tual description. In practice, an optimizing compiler might consolidate some of the steps.)

Now consider this statement:

dup = accumulate (team, five);

If accumulate () returned a structure instead of a reference to a structure, this could
involve copying the entire structure to a temporary location and then copying that copy
to dup. But with a reference return value, team is copied directly to dup, a more efficient
approach.

Note
A function that returns a reference is actually an alias for the referred-to variable.

Being Careful About What a Return Reference Refers To

The single most important point to remember when returning a reference is to avoid
returning a reference to a memory location that ceases to exist when the function termi-
nates. What you want to avoid is code along these lines:

const free throws & clone2(free throws & ft)

{

free throws newguy; // first step to big error
newguy = ft; // copy info
return newguy; // return reference to copy

This has the unfortunate effect of returning a reference to a temporary variable
(newguy) that passes from existence as soon as the function terminates. (Chapter 9, “Mem-
ory Models and Namespaces,” discusses the persistence of various kinds of variables.) Sim-
ilarly, you should avoid returning pointers to such temporary variables.

399

400

Chapter 8 Adventures in Functions

The simplest way to avoid this problem is to return a reference that was passed as an
argument to the function. A reference parameter will refer to data used by the calling
function; hence, the returned reference will refer to that same data. This, for example, is
what accumulate () does in Listing 8.6.

A second method is to use new to create new storage.You've already seen examples in
which new creates space for a string and the function returns a pointer to that space.
Here’s how you could do something similar with a reference:

const free throws & clone(free throws & ft)

{

free throws * pt;
*pt = ft; // copy info
return *pt; // return reference to copy

The first statement creates a nameless free_throws structure. The pointer pt points to
the structure, so *pt is the structure. The code appears to return the structure, but the
function declaration indicates that the function really returns a reference to this structure.
You could then use the function this way:

free throws & jolly = clone(three);

This makes jolly a reference to the new structure. There is a problem with this
approach:You should use delete to free memory allocated by new when the memory is
no longer needed. A call to clone () conceals the call to new, making it simpler to forget
to use delete later. The auto_ptr template or, better, the C++11 unique ptr discussed
in Chapter 16,“The string Class and the Standard Template Library,” can help automate
the deletion process.

Why Use const with a Reference Return?
Listing 8.6, as you’ll recall, had this statement:

accumulate (dup, five) = four;

It had the effect of first adding data from £ive to dup, then overwriting the contents of
dup with the contents of four. Why does this statement compile? Assignment requires a
modifiable Ivalue on the left. That is, the subexpression on the left of an assignment
expression should identify a block of memory that can be modified. In this case, the func-
tion returned a reference to dup, which does identify such a block of memory. So the
statement 1s valid.

Regular (non reference) return types, on the other hand, are rvalues, values that can’t be
accessed by address. Such expressions can appear on the right side of an assignment state-
ment but not the left. Other examples of rvalues include literals, such as 10. 0, and expres-
sions such as x + y. Clearly, it doesn’t make sense to try to take the address of a literal
such as 10. 0, but why is a normal function return value an rvalue? It’s because the return
value, you'll recall, resides in a temporary memory location that doesn’t necessarily persist
even until the next statement.

Reference Variables

Suppose you want to use a reference return value but don’t want to permit behavior
such as assigning a value to accumulate (). Just make the return type a const reference:

const free throws &
accumulate (free_throws & target, const free throws & source);

The return type now is const, hence a nonmodifiable lvalue. Therefore, the assignment
no longer is allowed:

accumulate (dup, five) = four; // not allowed for const reference return

What about the other function calls in the program? With a const reference return
type, the following statement would still be allowed:

display (accumulate (team, two));

That’s because the formal parameter for display () also is type const free thows &.
But the following statement would not be allowed because the first formal parameter for

accumulate () i not const:

accumulate (accumulate (team, three), four);

Is this a great loss? Not in this case because you still can do the following:

accumulate (team, three);
accumulate (team, four);

And of course you still could use accumulate () on the right side of an assignment
statement.

By omitting const, you can write shorter but more obscure-looking code.

Usually, you’re better off avoiding the addition of obscure features to a design because
obscure features often expand the opportunities for obscure errors. Making the return
type a const reference therefore protects you from the temptation of obfuscation. Occa-
sionally, however, omitting const does make sense. The overloaded << operator discussed
in Chapter 11,“Working with Classes,” is an example.

Using References with a Class Object

The usual C++ practice for passing class objects to a function is to use references. For
instance, you would use reference parameters for functions taking objects of the string,
ostream, istream, of stream, and ifstream(ja$esasargunlenm.

Let’s look at an example that uses the string class and illustrates some different design
choices, some of them bad.The general idea is to create a function that adds a given string
to each end of another string. Listing 8.7 provides three functions that are intended to do
this. However, one of the designs is so flawed that it may cause the program to crash or
even not compile.

401

402

Chapter 8 Adventures in Functions

Listing 8.7 strquote.cpp

// strquote.cpp -- different designs

#include <iostreams>

#include <string>

using namespace std;

string versionl (const string & sl, const string & s2);

const string & version2(string & sl, const string & s2);

const string & version3(string & sl, const string & s2);

int main()

{

string input;
string copy;
string result;

cout << "Enter a string: ";
getline(cin, input);
copy = input;

cout << "Your string as entered: " << input << endl;
result = versionl (input, "***");

cout << "Your string enhanced: " << result << endl;
cout << "Your original string: " << input << endl;

result = version2 (input, "###");
cout << "Your string enhanced: " << result << endl;
cout << "Your original string: " << input << endl;

cout << "Resetting original string.\n";
input = copy;
result = version3 (input, "eee@");

cout << "Your string enhanced: " << result << endl;
cout << "Your original string: " << input << endl;
return 0;

string versionl (const string & sl, const string & s2)

{

string temp;

temp = 82 + sl + s2;
return temp;

const string & version2(string & sl, const string & s2)

{

// has side

effect

// bad design

// has side

effect

Reference Variables

sl = s2 + sl + s2;
// safe to return reference passed to function
return sl;

const string & version3(string & sl, const string & s2) // bad design

{

string temp;

temp = s2 + sl + s2;
// unsafe to return reference to local variable
return temp;

Here is a sample run of the program in Listing 8.7:

Enter a string: It’s not my fault.

Your string as entered: It's not my fault.
Your string enhanced: ***It's not my fault.***
Your original string: It's not my fault.

Your string enhanced: ###It's not my fault.###
Your original string: ###It's not my fault.###
Resetting original string.

At this point the program crashed.

Program Notes
Version 1 of the function in Listing 8.7 is the most straightforward of the three:

string versionl (const string & sl, const string & s2)

{

string temp;

temp = s2 + sl + s2;
return temp;

It takes two string arguments and uses string class addition to create a new string
that has the desired properties. Note that the two function arguments are const refer-
ences. The function would produce the same end result if it just passed string objects:

string version4 (string sl, string s2) // would work the same

In this case, s1 and s2 would be brand-new string objects. Thus, using references is
more efficient because the function doesn’t have to create new objects and copy data from
the old objects to the new. The use of the const qualifier indicates that this function will
use, but not modify, the original strings.

The temp object is a new object, local to the versioni () function, and it ceases to
exist when the function terminates. Thus, returning temp as a reference won'’t work, so the

403

404

Chapter 8 Adventures in Functions

function type is string.This means the contents of temp will be copied to a temporary
return location. Then, in main (), the contents of the return location are copied to the
string named result:

result = versionl (input, "***");

Passing a C-Style String Argument to a string Object Reference Parameter

You may have noticed a rather interesting fact about the versioni () function: Both formal
parameters (s1 and s2) are type const string &, but the actual arguments (input and
nH** 1) gre type string and const char *, respectively. Because input is type string,
there is no problem having s1 refer to it. But how is it that the program accepts passing a
pointerto-char argument to a string reference?

Two things are going on here. One is that the string class defines a char *-to-string
conversion, which makes it possible to initialize a string object to a C-style string. The sec-
ond is a property of const reference formal parameters that is discussed earlier in this
chapter. Suppose the actual argument type doesn’t match the reference parameter type but
can be converted to the reference type. Then the program creates a temporary variable of
the correct type, initializes it to the converted value, and passes a reference to the tempo-
rary variable. Earlier this chapter you saw, for instance, that a const double & parameter
can handle an int argument in this fashion. Similarly, a const string & parameter can
handle a char * or const char =* argument in this fashion.

The convenient outcome of this is that if the formal parameter is type const string &, the
actual argument used in the function call can be a string object or a C-style string, such as
a quoted string literal, a null-terminated array of char, or a pointer variable that points to a
char. Hence the following works fine:

result = versionl (input, "***");

The version2 () function doesn’t create a temporary string. Instead, it directly alters
the original string:

const string & version2(string & sl, const string & s2) // has side effect

{

sl = 82 + sl + s2;
// safe to return reference passed to function
return sl;

This function is allowed to alter s1 because s1, unlike s2, is not declared using const.
Because s1 is a reference to an object (input) in main (), it’s safe to return s1 as a ref-
erence. Because s1 is a reference to input, the line

result = version2 (input, "###");

essentially becomes equivalent to the following:

version2 (input, "###"); // input altered directly by version2 ()
result = input; // reference to sl is reference to input

Reference Variables

However, because s1 is a reference to input, calling this function has the side effect of
altering input also:
Your original string: It's not my fault.

Your string enhanced: ###It's not my fault.###
Your original string: ###It's not my fault.###

Thus, if you want to keep the original string unaltered, this is the wrong design.
The third version in Listing 8.7 is a reminder of what not to do:

const string & version3(string & sl, const string & s2) // bad design

{

string temp;

temp = s2 + sl + s2;
// unsafe to return reference to local variable
return temp;

It has the fatal flaw of returning a reference to a variable declared locally inside
version3 (). This function compiles (with a warning), but the program crashes when
attempting to execute the function. Specifically, the following assignment aspect causes the
problem:

result = version3 (input, "eee@");

The program attempts to refer to memory that is no longer in use.

Another Object Lesson: Objects, Inheritance, and References

The ostream and ofstream classes bring an interesting property of references to the fore.
As you may recall from Chapter 6, “Branching Statements and Logical Operators,” objects
of the ofstream type can use ostream methods, allowing file input/output to use the
same forms as console input/output. The language feature that makes it possible to pass
features from one class to another is called inheritance, and Chapter 13,“Class Inheritance,”
discusses this feature in detail. In brief, ostream is termed a base class (because the
ofstream class is based on it) and ofstream is termed a derived class (because it is derived
from ostream). A derived class inherits the base class methods, which means that an
ofstream object can use base class features such as the precision() and setf () format-
ting methods.

Another aspect of inheritance 1s that a base class reference can refer to a derived class
object without requiring a type cast. The practical upshot of this is that you can define a
function having a base class reference parameter, and that function can be used with base
class objects and also with derived objects. For example, a function with a type ostream &
parameter can accept an ostream object, such as cout, or an ofstream object, such as you
might declare, equally well.

Listing 8.8 demonstrates this point by using the same function to write data to a file
and to display the data onscreen; only the function call argument is changed. This program

405

406 Chapter 8 Adventures in Functions

solicits the focal length of a telescope objective (its main mirror or lens) and of some eye-
pieces. Then it calculates and displays the magnification each eyepiece would produce in
that telescope. The magnification equals the focal length of the telescope divided by the
focal length of the eyepiece used, so the calculation is simple. The program also uses some
formatting methods, which, as promised, work equally well with cout and with ofstream
objects (fout, in this example).

Listing 8.8 filefunc.cpp

//filefunc.cpp -- function with ostream & parameter
#include <iostreams>

#include <fstream>

#include <cstdlibs>

using namespace std;

void file it (ostream & os, double fo, const double fe[],int n);
const int LIMIT = 5;
int main()
{
ofstream fout;
const char * fn = "ep-data.txt";
fout.open (fn) ;
if (!fout.is_open())
{
cout << "Can't open " << fn << ". Bye.\n";
exit (EXITiFAILURE) ;
1
double objective;
cout << "Enter the focal length of your "
"telescope objective in mm: ";
cin >> objective;
double eps [LIMIT];
cout << "Enter the focal lengths, in mm, of " << LIMIT
<< " eyepieces:\n";
for (int 1 = 0; i < LIMIT; i++)
{
cout << "Eyepiece #" << i + 1 << ": ";
cin >> epsl[i];
1
file it (fout, objective, eps, LIMIT);
file it (cout, objective, eps, LIMIT);
cout << "Done\n";
return 0;

Reference Variables

void file it (ostream & os, double fo, const double fel],int n)

{

ios_base::fmtflags initial;

initial = os.setf(ios_base::fixed); // save initial formatting state

os.precision(0) ;

0s << "Focal length of objective: " << fo << " mm\n";

os.setf (ios: :showpoint) ;

os.precision (1) ;

os.width(12);

os << "f.l. eyepiece";

os.width(15) ;

0s << "magnification" << endl;

for (int 1 = 0; 1 < n; i++)

{
os.width (1
os << feli
os.width(1

)i

i

2
1;
5)

os << int (fo/fe[i] + 0.5) << endl;

}

os.setf (initial); // restore initial formatting state

Here is a sample run of the program in Listing 8.8:

Enter the focal length of your telescope objective in mm: 1800

Enter the focal lengths, in mm, of 5 eyepieces:

Eyepiece #1: 30

Eyepiece #2: 19

Eyepiece #3: 14

Eyepiece #4: 8.8

Eyepiece #5: 7.5

Focal length of objective: 1800 mm

f.1. eyepiece magnification

30.0 60
19.0 95
14.0 129
8.8 205
7.5 240

Done

The following line writes the eyepiece data to the file ep-data. txt:

file it (fout, objective, eps, LIMIT);

And this line writes the identical information in the identical format to the screen:

file it (cout, objective, eps, LIMIT);

407

408

Chapter 8 Adventures in Functions

Program Notes

The main point of Listing 8.8 is that the os parameter, which is type ostream &, can refer
to an ostream object such as cout and to an ofstream object such as fout. But the pro-
gram also illustrates how ostream formatting methods can be used for both types. Let’s
review, or, in some cases, examine for the first time, some of these methods. (Chapter 17,
“Input, Output, and Files,” provides a fuller discussion.)

The setf () method allows you to set various formatting states. For example, the
method call setf (ios_base::fixed) places an object in the mode of using fixed deci-
mal-point notation. The call setf (ios_base:showpoint) places an object in the mode of
showing a trailing decimal point, even if the following digits are zeros. The precision ()
method indicates the number of figures to be shown to the right of the decimal (provided
that the object is in £ixed mode). All these settings stay in place unless they’re reset by
another method call. The width () call sets the field width to be used for the next output
action. This setting holds for displaying one value only, and then it reverts to the default.
(The default is a field width of zero, which is then expanded to just fit the actual quantity
being displayed.)

The file it () function uses an interesting pair of method calls:
ios_base::fmtflags initial;
initial = os.setf(ios_base::fixed); // save initial formatting state

os.setf (initial); // restore initial formatting state

The setf () method returns a copy of all the formatting settings in effect before the
call was made. ios_base: : fmtflags is a fancy name for the type needed to store this
information. So the assignment to initial stores the settings that were in place before
the file it () function was called. The initial variable can then be used as an argu-
ment to setf () to reset all the formatting settings to this original value. Thus, the func-
tion restores the object to the state it had before being passed to file it ().

Knowing more about classes will help you understand better how these methods work
and, why, for example, ios_base keeps popping up. But you don’t have to wait until
Chapter 17 to use these methods.

One final point: Each object stores its own formatting settings. So when the program
passes cout to file it (), cout’s settings are altered and then restored. When the
program passes fout to £ile it (), fout’s settings are altered and then restored.

When to Use Reference Arguments
There are two main reasons for using reference arguments:

= To allow you to alter a data object in the calling function
= To speed up a program by passing a reference instead of an entire data object
The second reason is most important for larger data objects, such as structures and class

objects. These two reasons are the same reasons you might have for using a pointer argu-
ment. This makes sense because reference arguments are really just a different interface for

Default Arguments

pointer-based code. So when should you use a reference? Use a pointer? Pass by value?
The following are some guidelines.
A function uses passed data without modifying it:

= If the data object is small, such as a built-in data type or a small structure, pass it
by value.

= If the data object is an array, use a pointer because that’s your only choice. Make the
pointer a pointer to const.

= If the data object is a good-sized structure, use a const pointer or a const reference
to increase program efficiency.You save the time and space needed to copy a struc-
ture or a class design. Make the pointer or reference const.

= If the data object is a class object, use a const reference. The semantics of class
design often require using a reference, which is the main reason C++ added this
feature. Thus, the standard way to pass class object arguments is by reference.

A function modifies data in the calling function:

= If the data object is a built-in data type, use a pointer. If you spot code like
fixit (&x), where x is an int, it’s pretty clear that this function intends to modify x.

= If the data object is an array, use your only choice: a pointer.
= If the data object is a structure, use a reference or a pointer.

= If the data object is a class object, use a reference.

Of course, these are just guidelines, and there might be reasons for making different
choices. For example, cin uses references for basic types so that you can use cin >> n
instead of cin >> &n.

Default Arguments

Let’s look at another topic from C++’s bag of new tricks: the default argument. A default
argument is a value that’s used automatically if you omit the corresponding actual argument
from a function call. For example, if you set up void wow (int n) so that n has a default
value of 1, the function call wow () is the same as wow (1) . This gives you flexibility in how
you use a function. Suppose you have a function called left () that returns the first n
characters of a string, with the string and n as arguments. More precisely, the function
returns a pointer to a new string consisting of the selected portion of the original string.
For example, the call 1left ("theory", 3) constructs a new string "the" and returns a
pointer to it. Now suppose you establish a default value of 1 for the second argument. The
call 1eft ("theory", 3) would work as before, with your choice of 3 overriding the
default. But the call 1eft ("theory"), instead of being an error, would assume a second
argument of 1 and return a pointer to the string "t . This kind of default is helpful if your
program often needs to extract a one-character string but occasionally needs to extract
longer strings.

409

410

Chapter 8 Adventures in Functions

How do you establish a default value? You must use the function prototype. Because
the compiler looks at the prototype to see how many arguments a function uses, the func-
tion prototype also has to alert the program to the possibility of default arguments. The
method is to assign a value to the argument in the prototype. For example, here’s the pro-
totype fitting this description of left ():

char * left(const char * str, int n = 1);

You want the function to return a new string, so its type is char*, or pointer-to-char.
You want to leave the original string unaltered, so you use the const qualifier for the first
argument.You want n to have a default value of 1, so you assign that value to n. A default
argument value is an initialization value. Thus, the preceding prototype initializes n to the
value 1. If you leave n alone, it has the value 1, but if you pass an argument, the new value
overwrites the 1.

When you use a function with an argument list, you must add defaults from right to
left. That is, you can’t provide a default value for a particular argument unless you also pro-
vide defaults for all the arguments to its right:

int harpo(int n, int m = 4, int j = 5); // VALID
int chico(int n, int m = 6, int j); // INVALID
int groucho(int k = 1, int m = 2, int n = 3); // VALID

For example, the harpo () prototype permits calls with one, two, or three arguments:

beeps = harpo(2); // same as harpo(2,4,5)
beeps = harpo(1,8); // same as harpo(l,8,5)
beeps = harpo (8,7,6); // no default arguments used

The actual arguments are assigned to the corresponding formal arguments from left to
right; you can’t skip over arguments. Thus, the following isn’t allowed:

beeps = harpo(3, ,8); // invalid, doesn't set m to 4

Default arguments aren’t a major programming breakthrough; rather, they are a con-
venience. When you begin working with class design, you’ll find that they can reduce the
number of constructors, methods, and method overloads you have to define.

Listing 8.9 puts default arguments to use. Note that only the prototype indicates the
default. The function definition is the same as it would be without default arguments.

Listing 8.9 1left.cpp

// left.cpp -- string function with a default argument
#include <iostream>
const int ArSize = 80;
char * left(const char * str, int n = 1);
int main()
{
using namespace std;
char sample[ArSize];
cout << "Enter a string:\n";

Default Arguments

cin.get (sample,ArSize) ;

char *ps = left (sample, 4);

cout << ps << endl;

delete [] ps; // free old string
ps = left (sample);

cout << ps << endl;

delete [] ps; // free new string
return 0;

// This function returns a pointer to a new string
// consisting of the first n characters in the str string.
char * left(const char * str, int n)
{
if(n < 0)
n=0;
char * p = new char[n+1];
int i;
for (1 = 0; 1 < n && str[i]; i++)

pli]l = str[i]l; // copy characters
while (i <= n)

pli++] = '\0'; // set rest of string to '\0'
return p;

Here’s a sample run of the program in Listing 8.9:

Enter a string:
forthcoming
fort

f

Program Notes

The program in Listing 8.9 uses new to create a new string for holding the selected char-
acters. One awkward possibility is that an uncooperative user may request a negative num-
ber of characters. In that case, the function sets the character count to 0 and eventually
returns the null string. Another awkward possibility is that an irresponsible user may
request more characters than the string contains. The function protects against this by

using a combined test:
i <n & strli]
The i < n test stops the loop after n characters have been copied. The second part of

the test, the expression str[i],is the code for the character about to be copied. If the
loop reaches the null character, the code is 0, and the loop terminates. The final while

411

412

Chapter 8 Adventures in Functions

loop terminates the string with the null character and then sets the rest of the allocated
space, if any, to null characters.

Another approach for setting the size of the new string is to set n to the smaller of the
passed value and the string length:

int len = strlen(str);
n= (n< len) ? n : len; // the lesser of n and len
char * p = new char[n+1];

This ensures that new doesn’t allocate more space than what’s needed to hold the
string. That can be useful if you make a call such as 1eft ("uHi!", 32767).The first
approach copies the "Hi!" into an array of 32767 characters, setting all but the first 3
characters to the null character. The second approach copies "Hi!" into an array of 4
characters. But by adding another function call (strlen()), it increases the program size,
slows the process, and requires that you remember to include the cstring (or string.h)
header file. C programmers have tended to opt for faster running, more compact code and
leave a greater burden on the programmer to use functions correctly. However, the C++
tradition places greater weight on reliability. After all, a slower program that works cor-
rectly is better than a fast program that works incorrectly. If the time taken to call
strlen() turns out to be a problem, you can let left () determine the lesser of n and the
string length directly. For example, the following loop quits when m reaches n or the end
of the string, whichever comes first:
int m = 0;
while (m <= n && str[m] != '\0'")

m++;
char * p = new char[m+1]:
// use m instead of n in rest of code

Remember, the expression str[m] != '\0' evaluates to true when str[m] is not the
null character and to false when it is the null character. Because nonzero values are con-
verted to true in an && expression and zero is converted to false, the while test also can
be written this way:

while (m<=n && str([m])

Function Overloading

Function polymorphism is a neat C++ addition to C’s capabilities. Whereas default argu-
ments let you call the same function by using varying numbers of arguments, function poly-
morphism, also called function overloading, lets you use multiple functions sharing the same
name. The word polymorphism means having many forms, so _function polymorphism lets a
function have many forms. Similarly, the expression function overloading means you can
attach more than one function to the same name, thus overloading the name. Both expres-
sions boil down to the same thing, but we’ll usually use the expression function
overloading—it sounds harder working.You can use function overloading to design a family
of functions that do essentially the same thing but using different argument lists.

Function Overloading 413

Overloaded functions are analogous to verbs having more than one meaning. For
example, Miss Piggy can root at the ball park for the home team, and she can root in soil
for truffles. The context (one hopes) tells you which meaning of root is intended in each
case. Similarly, C++ uses the context to decide which version of an overloaded function is
intended.

The key to function overloading is a function’s argument list, also called the function sig-
nature. If two functions use the same number and types of arguments in the same order,
they have the same signature; the variable names don’t matter. C++ enables you to define
two functions by the same name, provided that the functions have different signatures. The
signature can differ in the number of arguments or in the type of arguments, or both. For
example, you can define a set of print () functions with the following prototypes:

void print (const char * str, int width); // #1
void print (double d, int width); /] #2
void print(long 1, int width); /] #3
void print (int i, int width); /] #4
void print (const char *str); // #5

When you then use a print () function, the compiler matches your use to the proto-
type that has the same signature:

print ("Pancakes", 15); // use #1
print ("Syrup") ; // use #5
print (1999.0, 10); // use #2
print (1999, 12); // use #4
print (1999L, 15); // use #3

For example, print ("Pancakes", 15) uses a string and an integer as arguments, and it
matches Prototype #1.

When you use overloaded functions, you need to be sure you use the proper argument
types in the function call. For example, consider the following statements:

unsigned int year = 3210;
print (year, 6); // ambiguous call

Which prototype does the print () call match here? It doesn’t match any of them! A
lack of a matching prototype doesn’t automatically rule out using one of the functions
because C++ will try to use standard type conversions to force a match. If, say, the only
print () prototype were #2, the function call print (year, 6) would convert the year
value to type double. But in the earlier code there are three prototypes that take a num-
ber as the first argument, providing three different choices for converting year. Faced
with this ambiguous situation, C++ rejects the function call as an error.

Some signatures that appear to be different from each other nonetheless can’t coexist.
For example, consider these two prototypes:

double cube (double x);
double cube (double & x);

414

Chapter 8 Adventures in Functions

You might think this is a place you could use function overloading because the func-
tion signatures appear to be different. But consider things from the compiler’s standpoint.
Suppose you have code like this:

cout << cube(x);

The x argument matches both the double x prototype and the double &x prototype.
The compiler has no way of knowing which function to use. Therefore, to avoid such
confusion, when it checks function signatures, the compiler considers a reference to a type
and the type itself to be the same signature.

The function-matching process does discriminate between const and non-const vari-
ables. Consider the following prototypes:

void dribble (char * bits); // overloaded
void dribble (const char *cbits); // overloaded
void dabble (char * bits); // not overloaded
void drivel (const char * bits); // not overloaded

Here’s what various function calls would match:

const char pl[20] = "How's the weather?";
char p2[20] = "How's business?";

dribble (pl) ; // dribble (const char *);
dribble (p2) ; // dribble (char *);
dabble (pl) ; // no match

dabble (p2) ; // dabble (char *);

drivel (pl) ; // drivel (const char *);
drivel (p2) ; // drivel (const char *);

The dribble () function has two prototypes—one for const pointers and one for reg-
ular pointers—and the compiler selects one or the other, depending on whether the
actual argument is const.The dabble () function only matches a call with a non-const
argument, but the drivel () function matches calls with either const or non-const argu-
ments. The reason for this difference in behavior between drivel () and dabble () is that
it’s valid to assign a non-const value to a const variable, but not vice versa.

Keep in mind that the signature, not the function type, enables function overloading.
For example, the following two declarations are incompatible:
long gronk(int n, float m); // same signatures,
double gronk(int n, float m); // hence not allowed

Therefore, C++ doesn’t permit you to overload gronk () in this fashion.You can have
different return types, but only if the signatures are also different:

long gronk(int n, float m); // different signatures,
double gronk(float n, float m); // hence allowed

After we discuss templates later in this chapter, we’ll further discuss function
matching.

Function Overloading

Overloading Reference Parameters

Class designs and the STL often use reference parameters, and it’'s useful to know how
overloading works with different reference types. Consider the following three prototypes:

void sink (double & rl); // matches modifiable lvalue
void sank (const double & r2); // matches modifiable or const lvalue, rvalue
void sunk(double && r3); // matches rvalue

The Ivalue reference parameter r1 matches a modifiable Ivalue argument, such as a
double variable. The const Ivalue reference parameter r2 matches a modifiable Ivalue
argument, a const Ivalue argument, and an rvalue argument, such as the sum of two
double values. Finally, the rvalue reference r3 matches an rvalue. Note how r2 can match
the same sort of arguments that r1 and r3 match. This raises the question of what hap-
pens when you overload a function on these three types of parameters. The answer is that
the more exact match is made:

void staff (double & rs); // matches modifiable lvalue
voit staff (const double & rcs); // matches rvalue, const lvalue
void stove (double & rl); // matches modifiable lvalue
void stove (const double & r2); // matches const lvalue

void stove (double && r3); // matches rvalue

This allows you to customize the behavior of a function based on the Ivalue, const, or
rvalue nature of the argument:

double x = 55.5;
const double y = 32.0;

stove (x) ; // calls stove (double &)
stove (y) ; // calls stove (const double &)
stove (x+y) ; // calls stove (double &&)

If, say, you omit the stove (double &&) function, then stove (x+y) will call the
stove (const double &) function instead

An Overloading Example

In this chapter we’ve already developed a left () function that returns a pointer to the
first n characters in a string. Let’s add a second left () function, one that returns the first n
digits in an integer. You can use it, for example, to examine the first three digits of a U.S.
postal zip code stored as an integer, which is useful if you want to sort for urban areas.

The integer function is a bit more difficult to program than the string version because

you don’t have the benefit of each digit being stored in its own array element. One
approach is to first compute the number of digits in the number. Dividing a number by
10 lops off one digit, so you can use division to count digits. More precisely, you can do so
with a loop, like this:

unsigned digits = 1;

while (n /= 10)

digits++;

415

416

Chapter 8 Adventures in Functions

This loop counts how many times you can remove a digit from n until none are left.
Recall thatn /= 10isshortforn = n / 10.Ifnis 8, for example, the test condition
assigns to n the value 8 / 10, or 0, because it’s integer division. That terminates the loop,
and digits remains at 1. But if n is 238, the first loop test sets n to 238 / 10, or 23.That’s
nonzero, so the loop increases digits to 2.The next cycle sets n to 23 / 10, or 2. Again,
that’s nonzero, so digits grows to 3.The next cycle setsn to 2 / 10, or 0, and the loop
quits, leaving digits set to the correct value, 3.

Now suppose you know that the number has five digits, and you want to return the
first three digits.You can get that value by dividing the number by 10 and then dividing
the answer by 10 again. Each division by 10 lops one more digit off the right end.To cal-
culate the number of digits to lop, you just subtract the number of digits to be shown
from the total number of digits. For example, to show four digits of a nine-digit number,
you lop off the last five digits.You can code this approach as follows:
ct = digits - ct;
while (ct--)

num /= 10;
return num;

Listing 8.10 incorporates this code into a new left () function.The function includes
some additional code to handle special cases, such as asking for zero digits or asking for
more digits than the number possesses. Because the signature of the new left () differs
from that of the old 1eft (), you can use both functions in the same program.

Listing 8.10 1leftover.cpp

// leftover.cpp -- overloading the left() function
#include <iostream>

unsigned long left (unsigned long num, unsigned ct);
char * left(const char * str, int n = 1);

int main()
using namespace std;
char * trip = "Hawaii!!"; // test value
unsigned long n = 12345678; // test value
int 1i;

char * temp;

for (i = 1; 1 < 10; i++)
{
cout << left(n, i) << endl;
temp = left(trip,i);
cout << temp << endl;
delete [] temp; // point to temporary storage

}

return 0;

Function Overloading 417

// This function returns the first ct digits of the number num.
unsigned long left (unsigned long num, unsigned ct)

{
1;
unsigned long n = num;

unsigned digits

if (ct == 0 || num == 0)

return 0; // return 0 if no digits
while (n /= 10)

digits++;

if (digits > ct)

{

ct = digits - ct;

while (ct--)
num /= 10;

return num; // return left ct digits

}

else // if ct >= number of digits
return num; // return the whole number

// This function returns a pointer to a new string
// consisting of the first n characters in the str string.
char * left(const char * str, int n)
{
if(n < 0)
n=20;
char * p = new char[n+1];
int i;
for (1 = 0; 1 < n && str[i]; i++)

plil = str[il; // copy characters
while (i <= n)

pli++] = '\0'; // set rest of string to '\0'
return p;

Here’s the output of the program in Listing 8.10:

12
Ha
123
Haw
1234

418 Chapter 8 Adventures in Functions

Hawa
12345
Hawai
123456
Hawaii
1234567
Hawaii!
12345678
Hawaii!!
12345678
Hawaiil!

When to Use Function Overloading

You might find function overloading fascinating, but you shouldn’t overuse it.You should
reserve function overloading for functions that perform basically the same task but with
different forms of data. Also you might want to check whether you can accomplish the
same end by using default arguments. For example, you could replace the single, string-
oriented left () function with two overloaded functions:

char * left(const char * str, unsigned n); // two arguments
char * left(const char * str); // one argument

But using the single function with a default argument is simpler. There’s just one func-
tion to write instead of two, and the program requires memory for just one function
instead of two. If you decide to modify the function, you have to edit only one. However,
if you require different types of arguments, default arguments are of no avail, so in that
case, you should use function overloading.

What Is Name Decoration?

How does C++ keep track of which overloaded function is which? It assigns a secret identity
to each of these functions. When you use the editor of your C++ development tool to write
and compile programs, your C++ compiler performs a bit of magic on your behalf—known as
name decoration or name mangling—through which each function name is encrypted, based
on the formal parameter types specified in the function’s prototype. Consider the following
undecorated function prototype:

long MyFunctionFoo (int, float);

This format is fine for us humans; we know that the function accepts two arguments of type
int and float, and it returns a value of type long. For its own use, the compiler docu-
ments this interface by transforming the name into an internal representation with a more
unsightly appearance, perhaps something like this:

?MyFunctionFoo@@YAXH

The apparent gibberish decorating the original name (or mangling it, depending on your atti-
tude) encodes the number and types of parameters. A different function signature would
result in a different set of symbols being added, and different compilers would use different
conventions for their efforts at decorating.

Function Templates

Function Templates

Contemporary C++ compilers implement one of the newer C++ additions: function
templates. A function template is a generic function description; that is, it defines a function
in terms of a generic type for which a specific type, such as int or double, can be substi-
tuted. By passing a type as a parameter to a template, you cause the compiler to generate a
function for that particular type. Because templates let you program in terms of a generic
type instead of a specific type, the process is sometimes termed generic programming.
Because types are represented by parameters, the template feature is sometimes referred to
as parameterized types. Let’s see why such a feature is useful and how it works.

Earlier Listing 8.4 defined a function that swapped two int values. Suppose you want
to swap two double values instead. One approach is to duplicate the original code but
replace each int with double. If you need to swap two char values, you can use the same
technique again. Still, it’s wasteful of your valuable time to have to make these petty
changes, and there’s always the possibility of making an error. If you make the changes by
hand, you might overlook an int. If you do a global search-and-replace to substitute, say,
double for int, you might do something such as converting
int x;

short interval;

to the following:

double x; // intended change of type
short doubleerval; // unintended change of variable name

C++’ function template capability automates the process, saving you time and provid-
ing greater reliability.

Function templates enable you to define a function in terms of some arbitrary type. For
example, you can set up a swapping template like this:
template <typename AnyType>
void Swap (AnyType &a, AnyType &b)

{

AnyType temp;

temp = a;
a = Db;
b = temp;

The first line specifies that you are setting up a template and that you’re naming the
arbitrary type AnyType.The keywords template and typename are obligatory, except that
you can use the keyword class instead of typename. Also you must use the angle brack-
ets. The type name (AnyType, in this example) is your choice, as long as you follow the
usual C++ naming rules; many programmers use simple names such as T, which, one must
admit, is simple indeed. The rest of the code describes the algorithm for swapping two val-
ues of type AnyType.The template does not create any functions. Instead, it provides the
compiler with directions about how to define a function. If you want a function to swap

419

420

Chapter 8 Adventures in Functions

ints, then the compiler creates a function following the template pattern, substituting int
for AnyType. Similarly, if you need a function to swap doubles, the compiler follows the
template, substituting the double type for AnyType.

Before the C++98 Standard added the keyword typename to the language, C++ used
the keyword class in this particular context. That is, you can write the template defini-
tion this way:
template <class AnyType>
void Swap (AnyType &a, AnyType &b)

{

AnyType temp;

temp = a;
a = b;
b = temp;

The typename keyword makes it a bit more obvious that the parameter AnyType repre-
sents a type; however, large libraries of code have already been developed by using the
older keyword class.The C++ Standard treats the two keywords identically when they
are used in this context. This book uses both forms so that you will be familiar with them
when encountering them elsewhere.

Tip

You should use templates if you need functions that apply the same algorithm to a variety of
types. If you aren’t concerned with backward compatibility and can put up with the effort of
typing a longer word, you can use the keyword typename rather than class when you
declare type parameters.

To let the compiler know that you need a particular form of swap function, you just
use a function called swap () in your program.The compiler checks the argument types
you use and then generates the corresponding function. Listing 8.11 shows how this
works. The program layout follows the usual pattern for ordinary functions, with a tem-
plate function prototype near the top of the file and the template function definition fol-
lowing main ().The example follows the more usual practice of using T instead of
AnyType as the type parameter.

Listing 8.11 funtemp.cpp

// funtemp.cpp -- using a function template
#include <iostream>

// function template prototype

template <typename T> // or class T

void Swap (T &a, T &b);

int main()

{

using namespace std;

Function Templates

int i = 10;

int j = 20;

cout << "i, j = " << 1 << ", " << J << ".\n";

cout << "Using compiler-generated int swapper:\n";
Swap(i,j); // generates void Swap(int &, int &)
cout << "Now i, j = " << 1 << ", " << j << ".\n";

double x = 24.5;

double y = 81.7;

cout << "x, y = " << x << ", " <<y << ".\n";

cout << "Using compiler-generated double swapper:\n";
Swap (x,y); // generates void Swap (double &, double &)
cout << "Now X, y = " << X << ", " <<y << ".\n";

// cin.get();

return 0;

// function template definition
template <typename T> // or class T
void Swap(T &a, T &b)

{

T temp; // temp a variable of type T

temp = a;
a = b;
b = temp;

The first swap () function in Listing 8.11 has two int arguments, so the compiler gen-
erates an int version of the function. That is, it replaces each use of T with int, producing
a definition that looks like this:

void Swap(int &a, int &b)

{
int temp;
temp = a;
a = b;
b = temp;

You don't see this code, but the compiler generates and then uses it in the program.
The second swap () function has two double arguments, so the compiler generates a
double version. That is, it replaces T with double, generating this code:

void Swap (double &a, double &b)

{

double temp;
temp = a;

421

422

Chapter 8 Adventures in Functions

a = b;
b = temp;

Here’s the output of the program in Listing 8.11, which shows that the process has
worked:
i, j = 10, 20.
Using compiler-generated int swapper:
Now i, j = 20, 10.
X, y = 24.5, 81.7.
Using compiler-generated double swapper:
Now x, vy = 81.7, 24.5.

Note that function templates don’t make executable programs any shorter. In Listing
8.11, you still wind up with two separate function definitions, just as you would if you
defined each function manually. And the final code doesn’t contain any templates; it just
contains the actual functions generated for the program.The benefits of templates are that
they make generating multiple function definitions simpler and more reliable.

More typically, templates are placed in a header file that is then included in the file
using them. Chapter 9 discusses header files.

Overloaded Templates

You use templates when you need functions that apply the same algorithm to a variety of
types, as in Listing 8.11. It might be, however, that not all types would use the same algo-
rithm. To handle this possibility, you can overload template definitions, just as you overload
regular function definitions. As with ordinary overloading, overloaded templates need dis-
tinct function signatures. For example, Listing 8.12 adds a new swapping template—one
for swapping elements of two arrays. The original template has the signature (T &, T &),
whereas the new template has the signature (T [1, T [], int).Note that the final
parameter in this case happens to be a specific type (int) rather than a generic type. Not
all template arguments have to be template parameter types.

When, in twotemps .cpp, the compiler encounters the first use of Swap (), it notices
that it has two int arguments and matches Swap () to the original template. The second
use, however, has two int arrays and an int value as arguments, and this matches the new
template.

Listing 8.12 twotemps.cpp

// twotemps.cpp -- using overloaded template functions
#include <iostream>

template <typename T> // original template

void Swap(T &a, T &b);

template <typename T> // new template
void Swap(T *a, T *b, int n);

Function Templates

void Show(int al]);

]
const int Lim = 8;

int main()

{

using namespace std;
int i = 10, § = 20;

cout << "i, j = " << 1 << ", " << J << ".\n";

cout << "Using compiler-generated int swapper:\n";
Swap (i,73); // matches original template
cout << "Now i, j = " << 1 << ", " << j << ".\n";

int d1[Lim] = {0,7,0,4,1,7,7,6};
int d2[Lim] = {0,7,2,0,1,9,6,9};
cout << "Original arrays:\n";
Show (d1) ;

Show (d2) ;

Swap (d1,d2,Lim) ; // matches new template
cout << "Swapped arrays:\n";
Show (d1) ;

Show (d2) ;

// cin.get();

return 0;

template <typename T>
void Swap (T &a, T &b)

{

T temp;
temp = a;
a = b;
b = temp;

template <typename T>
void Swap(T all, T bl[], int n)

{

T temp;
for (int i = 0; 1 < n; 1i++)
{

temp = alil;

ali] = bli]l;

bl[i] = temp;

void Show(int all)

{

423

424 Chapter 8 Adventures in Functions

using namespace std;

cout << al0] << all] << "/";

cout << al2] << al3] << "/";

for (int i1 = 4; 1 < Lim; 1i++)
cout << alil;

cout << endl;

Here is the output of the program in Listing 8.12:
i, j = 10, 20.
Using compiler-generated int swapper:
Now i, j = 20, 10.
Original arrays:
07/04/1776
07/20/1969
Swapped arrays:
07/20/1969
07/04/1776

Template Limitations
Suppose you have a template function:
template <class T> // or template <typename T>

void £(T a, T b)

(...}

Often the code makes assumptions about what operations are possible for the type. For
instance, the following statement assumes that assignment is defined, and this would not be
true if type T is a built-in array type:

a = b;

Similarly, the following assumes > is defined, which is not true if T is an ordinary
structure:

if (a > b)

Also the > operator is defined for array names, but because array names are addresses, it
compares the addresses of the arrays, which may not be what you have in mind. And the
following assumes the multiplication operator is defined for type T, which is not the case
if T is an array, a pointer, or a structure:

T ¢ = a*b;

In short, it’s easy to write a template function that cannot handle certain types. On the
other hand, sometimes a generalization makes sense, even if ordinary C++ syntax doesn’t
allow for it. For example, it could make sense to add structures containing position coor-
dinates, even though the + operator isn’t defined for structures. One approach is that C++

Function Templates

allows one to overload the + operator so that it can be used with a particular form of
structure or class. Chapter 11 discusses this facility. A template that requires using the +
operator then could handle a structure that had an overloaded + operator. Another
approach is to provide specialized template definitions for particular types. Let’s look at
that next.

Explicit Specializations
Suppose you define a structure like the following:

struct job

{
char name [40] ;
double salary;
int floor;

}i

Also suppose you want to be able to swap the contents of two such structures. The
original template uses the following code to effect a swap:

temp = a;
a = b;
b = temp;

Because C++ allows you to assign one structure to another, this works fine, even if
type T is a job structure. But suppose you only want to swap the salary and floor mem-
bers, keeping the name members unchanged. This requires different code, but the argu-
ments to Swap () would be the same as for the first case (references to two job structures),
so you can’t use template overloading to supply the alternative code.

However, you can supply a specialized function definition, called an explicit
specialization, with the required code. If the compiler finds a specialized definition that
exactly matches a function call, it uses that definition without looking for templates.

The specialization mechanism has changed with the evolution of C++.We’'ll look at
the current form as mandated by the C++ Standard.

Third-Generation Specialization (ISO/ANSI C++ Standard)
After some youthful experimentation with other approaches, the C++98 Standard settled
on this approach:

= For a given function name, you can have a non template function, a template func-
tion, and an explicit specialization template function, along with overloaded versions

of all of these.

= The prototype and definition for an explicit specialization should be preceded by
template <> and should mention the specialized type by name.

= A specialization overrides the regular template, and a non template function over-

rides both.

425

426

Chapter 8 Adventures in Functions

Here’s how prototypes for swapping type job structures would look for these three forms:

// non template function prototype
void Swap(job &, job &);

// template prototype
template <typename T>
void Swap(T &, T &);

// explicit specialization for the job type
template <> void Swap<job>(job &, job &);

As mentioned previously, if more than one of these prototypes is present, the compiler
chooses the non template version over explicit specializations and template versions, and it
chooses an explicit specialization over a version generated from a template. For example,
in the following code, the first call to swap () uses the general template, and the second
call uses the explicit specialization, based on the job type:

template <class T»> // template
void Swap(T &, T &);

// explicit specialization for the job type
template <> void Swap<job>(job &, job &);
int main()

{

double u, v;

Swap(u,v); // use template
job a, b;

Swap(a,b); // use void Swap<job>(job &, job &)

The <job> in Swap<job> is optional because the function argument types indicate that
this is a specialization for job. Thus, the prototype can also be written this way:

template <> void Swap(job &, job &); // simpler form

In case you have to work with an older compiler, we’ll come back to pre-C++ Stan-
dard usage soon, but first, let’s see how explicit specializations are supposed to work.

An Example of Explicit Specialization

Listing 8.13 illustrates how explicit specialization works.

Function Templates

Listing 8.13 twoswap.cpp

// twoswap.cpp -- specialization overrides a template
#include <iostream>

template <typename T>

void Swap(T &a, T &b);

struct job

{
char name [40] ;
double salary;
int floor;

Vi

// explicit specialization
template <> void Swap<job>(job &j1, job &j2);
void Show(job &) ;

int main()
{
using namespace std;
cout.precision(2);
cout.setf (ios::fixed, ios::floatfield);
int i = 10, j = 20;
cout << "i, j = " << i << ", " << j << ".\n";
cout << "Using compiler-generated int swapper:\n";
Swap (i,73) ; // generates void Swap (int &, int &)

cout << "Now i, j = " << 1 << ", " << J << ".\n";

job sue = {"Susan Yaffee", 73000.60, 7};

job sidney = {"Sidney Taffee", 78060.72, 9};
cout << "Before job swapping:\n";

Show (sue) ;

Show (sidney) ;

Swap (sue, sidney); // uses void Swap(job &, job &)
cout << "After job swapping:\n";

Show (sue) ;

Show (sidney) ;

// cin.get();

return 0;

template <typename T>
void Swap (T &a, T &b) // general version
{

T temp;

temp = a;

427

428

Chapter 8 Adventures in Functions

b = temp;

// swaps just the salary and floor fields of a job structure

template <> void Swap<job>(job &j1, job &j2) // specialization
{

double t1;

int t2;

tl = jl.salary;

jl.salary = j2.salary;

j2.salary = tl1;

t2 = jl.floor;

jl.floor = j2.floor;

j2.floor = t2;

}
void Show(job &j)
{
using namespace std;
cout << j.name << ": $" << j.salary
<< " on floor " << j.floor << endl;
}

Here’s the output of the program in Listing 8.13:
i, j = 10, 20.
Using compiler-generated int swapper:
Now i, j = 20, 10.
Before job swapping:
Susan Yaffee: $73000.60 on floor 7
Sidney Taffee: $78060.72 on floor 9
After job swapping:
Susan Yaffee: $78060.72 on floor 9
Sidney Taffee: $73000.60 on floor 7

Instantiations and Specializations

To extend your understanding of templates, let’s investigate the terms instantiation and spec-
ialization. Keep in mind that including a function template in your code does not in itself
generate a function definition. It’s merely a plan for generating a function definition.
When the compiler uses the template to generate a function definition for a particular
type, the result is termed an instantiation of the template. For example, in Listing 8.13, the
function call swap (i,3) causes the compiler to generate an instantiation of Swap (), using
int as the type.The template is not a function definition, but the specific instantiation

Function Templates

using int is a function definition. This type of instantiation is termed implicit instantiation
because the compiler deduces the necessity for making the definition by noting that the
program uses a Swap () function with int parameters.

Originally, using implicit instantiation was the only way the compiler generated func-
tion definitions from templates, but now C++ allows for explicit instantiation. That means
you can instruct the compiler to create a particular instantiation—for example,
Swap<int> () —directly. The syntax is to declare the particular variety you want, using the
<> notation to indicate the type and prefixing the declaration with the keyword
template:

template void Swap<int>(int, int); // explicit instantiation

A compiler that implements this feature will, upon seeing this declaration, use the
Swap () template to generate an instantiation, using the int type.That is, this declaration
means “Use the swap () template to generate a function definition for the int type.” Con-
trast the explicit instantiation with the explicit specialization, which uses one or the other
of these equivalent declarations:

template <> void Swap<int>(int &, int &); // explicit specialization
template <> void Swap(int &, int &); // explicit specialization

The difference is that these last two declarations mean “Don’t use the swap () template
to generate a function definition. Instead, use a separate, specialized function definition
explicitly defined for the int type.”” These prototypes have to be coupled with their own
function definitions. The explicit specialization declaration has <> after the keyword tem-
plate, whereas the explicit instantiation omits the <>.

Caution

It is an error to try to use both an explicit instantiation and an explicit specialization for the
same type(s) in the same file, or, more generally, the same translation unit.

Explicit instantiations also can be created by using the function in a program. For
instance, consider the following:

template <class T>
T AdA(T a, T b) // pass by value

{

return a + b;

int m = 6;
double x = 10.2;
cout << Add<double>(x, m) << endl; // explicit instantiation

The template would fail to match the function call Add (x, m) because the template
expects both function arguments to be of the same type. But using Add<double>(x, m)
forces the type double instantiation, and the argument m is type cast to type double to
match the second parameter of the Add<doubles (double, double) function.

429

430

Chapter 8 Adventures in Functions

What if you do something similar with swap () ?

int m = 5;
double x = 14.3;
Swap<double> (m, x); // almost works

This generates an explicit instantiation for type double. Unfortunately, in this case, the
code won'’t work because the first formal parameter, being type double &, can'’t refer to
the type int variable m.

Implicit instantiations, explicit instantiations, and explicit specializations collectively are
termed specializations. What they all have in common is that they represent a function defi-
nition that uses specific types rather than one that is a generic description.

The addition of the explicit instantiation led to the new syntax of using template and
template <> prefixes in declarations to distinguish between the explicit instantiation and
the explicit specialization. As in many other cases, the cost of doing more is more syntax
rules. The following fragment summarizes these concepts:

template <class T>
void Swap (T &, T &); // template prototype

template <> void Swap<job>(job &, job &); // explicit specialization for job
int main(void)

{

template void Swap<chars(char &, char &); // explicit instantiation for char
short a, b;

Swap (a,b) ; // implicit template instantiation for short

job n, m;

Swap (n, m); // use explicit specialization for job

char g, h;

Swap(g, h); // use explicit template instantiation for char

When the compiler reaches the explicit instantiation for char, it uses the template defi-
nition to generate a char version of Swap () . For the remaining uses of swap (), the com-
piler matches a template to the actual arguments used in the function call. For example,
when the compiler reaches the function call swap (a,b), it generates a short version of
Swap () because the two arguments are type short.When the compiler reaches
Swap (n,m), it uses the separate definition (the explicit specialization) provided for the job
type. When the compiler reaches swap (g, h), it uses the template specialization it already
generated when it processed the explicit instantiation.

Function Templates

Which Function Version Does the Compiler Pick?

What with function overloading, function templates, and function template overloading,
C++ needs, and has, a well-defined strategy for deciding which function definition to use
for a function call, particularly when there are multiple arguments. The process is called
overload resolution. Detailing the complete strategy would take a small chapter, so let’s take
just a broad look at how the process works:

= Phase 1—Assemble a list of candidate functions. These are functions and template
functions that have the same names as the called functions.

= Phase 2—From the candidate functions, assemble a list of viable functions. These
are functions with the correct number of arguments and for which there is an
implicit conversion sequence, which includes the case of an exact match for each
type of actual argument to the type of the corresponding formal argument. For
example, a function call with a type £loat argument could have that value con-
verted to a double to match a type double formal parameter, and a template could
generate an instantiation for £loat.

= Phase 3—Determine whether there is a best viable function. If so, you use that
function. Otherwise, the function call is an error.
Consider a case with just one function argument—for example, the following call:
may('B'); // actual argument is type char
First, the compiler rounds up the suspects, which are functions and function templates
that have the name may (). Then, it finds those that can be called with one argument. For

example, the following pass muster because they have the same name and can be used
with one argument:

void may (int) ; // #1
float may(float, float = 3); /] #2
void may (char) ; /] #3
char * may(const char *); /] #4
char may(const char &); // #5
template<class T> void may(const T &); /] #6
template<class T> void may (T *); /] #7

Note that just the signatures and not the return types are considered. Two of these can-
didates (#4 and #7), however, are not viable because an integral type cannot be converted
implicitly (that is, without an explicit type cast) to a pointer type. The remaining template
is viable because it can be used to generate a specialization, with T taken as type char.
That leaves five viable functions, each of which could be used if it were the only function
declared.

Next, the compiler has to determine which of the viable functions is best. It looks at
the conversion required to make the function call argument match the viable candidate’s
argument. In general, the ranking from best to worst is this:

431

432

Chapter 8 Adventures in Functions

1. Exact match, with regular functions outranking templates

2. Conversion by promotion (for example, the automatic conversions of char and
short to int and of float to double)

3. Conversion by standard conversion (for example, converting int to char or long
to double)

4. User-defined conversions, such as those defined in class declarations

For example, Function #1 is better than Function #2 because char-to-int is a promo-
tion (refer to Chapter 3, “Dealing with Data”), whereas char-to-float is a standard con-
version (refer to Chapter 3). Functions #3, #5, and #6 are better than either #1 or #2
because they are exact matches. Both #3 and #5 are better than #6 because #6 is a tem-
plate. This analysis raises a couple questions. What is an exact match? And what happens if
you get two of them, such as #3 and #5? Usually, as is the case with this example, two
exact matches are an error; but a couple special cases are exceptions to this rule. Clearly,
we need to investigate the matter further!

Exact Matches and Best Matches

C++ allows some “trivial conversions” when making an exact match. Table 8.1 lists them,
with Type standing for some arbitrary type. For example, an int actual argument is an
exact match to an int & formal parameter. Note that Type can be something like char &,
so these rules include converting char & to const char & The Type (argument-list)
entry means that a function name as an actual argument matches a function pointer as a
formal parameter, as long as both have the same return type and argument list. (Remem-
ber function pointers from Chapter 7. Also recall that you can pass the name of a function
as an argument to a function that expects a pointer to a function.) We’ll discuss the
volatile keyword later in Chapter 9.

Table 8.1 Trivial Conversions Allowed for an Exact Match

From an Actual Argument To a Formal Argument
Type Type &

Type & Type

Type [] * Type

Type (argument-list) Type (*) (argument-1list)
Type const Type

Type volatile Type

Type * const Type *

Type * volatile Type *

Function Templates

Suppose you have the following function code:

struct blot {int a; char b[10];};
blot ink = {25, "spots"};

recycle (ink) ;

In that case, all the following prototypes would be exact matches:

void recycle(blot) ; // #1 Dblot-to-blot

const blot) ; // #2 Dblot-to- (const blot)
void recycle(blot &); // #3 Dblot-to- (blot &)

void recycle(const blot &); // #4 Dblot-to-(const blot &)

void recycle

(
(
(
(

As you might expect, the result of having several matching prototypes is that the com-
piler cannot complete the overload resolution process. There is no best viable function,
and the compiler generates an error message, probably using words such as ambiguous.

However, sometimes there can be overload resolution even if two functions are an
exact match. First, pointers and references to non-const data are preferentially matched to
non-const pointer and reference parameters. That is, if only Functions #3 and #4 were
available in the recycle () example, #3 would be chosen because ink wasn’t declared as
const. However, this discrimination between const and non-const applies just to data
referred to by pointers and references. That is, if only #1 and #2 were available, you would
get an ambiguity error.

Another case in which one exact match is better than another is when one function is
a non template function and the other isn’t. In that case, the non template is considered
better than a template, including explicit specializations.

If you wind up with two exact matches that both happen to be template functions, the
template function that is the more specialized, if either, is the better function. That means,
for example, that an explicit specialization is chosen over one generated implicitly from
the template pattern:

struct blot {int a; char b[10];};
template <class Type> void recycle (Type t); // template
template <> void recycle<blot> (blot & t); // specialization for blot

blot ink = {25, "spots"};

recycle(ink); // use specialization

The term most specialized doesn’t necessarily imply an explicit specialization; more gen-
erally, it indicates that fewer conversions take place when the compiler deduces what type
to use. For example, consider the following two templates:

template <class Type> void recycle (Type t); // #1
template <class Type> void recycle (Type * t); // #2

433

434

Chapter 8 Adventures in Functions

Suppose the program that contains those templates also contains the following code:

struct blot {int a; char b[10];};
blot ink = {25, "spots"};

recycle (&ink); // address of a structure

The recycle (&ink) call matches Template #1, with Type interpreted as blot *.The
recycle (&ink) function call also matches Template #2, this time with Type being ink.
This combination sends two implicit instantiations, recycle<blot *>(blot *) and
recycle<blot> (blot *),to the viable function pool.

Of these two template functions, recycle<blot *>(blot *) is considered the more
specialized because it underwent fewer conversions in being generated. That is, Template
#2 already explicitly said that the function argument was pointer-to-Type, so Type could
be directly identified with blot. However, Template #1 had Type as the function argu-
ment, so Type had to be interpreted as pointer-to-blot.That is, in Template #2, Type was
already specialized as a pointer, hence it is “more specialized.”

The rules for finding the most specialized template are called the partial ordering rules
for function templates. Like explicit instantiations, they are C++98 additions to the C++
language.

A Partial Ordering Rules Example

Let’s examine a complete program that uses the partial ordering rules for identifying
which template definition to use. Listing 8.14 has two template definitions for displaying
the contents of an array. The first definition (Template A) assumes that the array that is
passed as an argument contains the data to be displayed. The second definition (Template
B) assumes that the array elements are pointers to the data to be displayed.

Listing 8.14 tempover.cpp

// tempover.cpp -- template overloading
#include <iostream>

template <typename T> // template A
void ShowArray (T arr([], int n);

template <typename T> // template B
void ShowArray (T * arr[], int n);

struct debts

{

char name[50] ;
double amount;

}i

int main()

Function Templates

using namespace std;
int things([6] = {13, 31, 103, 301, 310, 130};
struct debts mr E[3] =
{
{"Ima Wolfe", 2400.0},
{"Ura Foxe", 1300.0},
{"Iby Stout", 1800.0}
}i

double * pd[3];

// set pointers to the amount members of the structures in mr_E
for (int 1 = 0; 1 < 3; 1i++)
pd[i] = &mr_E[i].amount;

cout << "Listing Mr. E's counts of things:\n";
// things is an array of int
ShowArray (things, 6); // uses template A
cout << "Listing Mr. E's debts:\n";
// pd is an array of pointers to double
ShowArray (pd, 3); // uses template B (more specialized)
return 0;

template <typename T>
void ShowArray (T arr[], int n)
{
using namespace std;
cout << "template A\n";
for (int 1 = 0; 1 < n; i++)
cout << arr[i] << ' ';
cout << endl;

template <typename T>
void ShowArray (T * arr[], int n)
{
using namespace std;
cout << "template B\n";
for (int 1 = 0; 1 < n; 1i++)
cout << *arr[i] << ' ';

cout << endl;

435

436

Chapter 8 Adventures in Functions

Consider this function call:

ShowArray (things, 6);

The identifier things is the name of an array of int, so it matches the following tem-
plate with T taken to be type int:

template <typename T> // template A
void ShowArray (T arr[], int n);

Next, consider this function call:

ShowArray (pd, 3);

Here, pd is the name of an array of double *.This could be matched by Template A:

template <typename T> // template A
void ShowArray (T arr([], int n);

Here, T would be taken to be type double *.In this case, the template function would
display the contents of the pd array: three addresses. The function call could also be
matched by Template B:

template <typename T> // template B
void ShowArray (T * arr[], int n);

In this case, T is type double, and the function displays the dereferenced elements
*arr [1]—that is, the double values pointed to by the array contents. Of the two tem-
plates, Template B is the more specialized because it makes the specific assumption that the
array contents are pointers, so it is the template that gets used.

Here’s the output of the program in Listing 8.14:

Listing Mr. E's counts of things:
template A

13 31 103 301 310 130

Listing Mr. E's debts:

template B

2400 1300 1800

If you remove Template B from the program, the compiler then uses Template A for
listing the contents of pd, so it lists the addresses instead of the values. Try it and see.

In short, the overload resolution process looks for a function that’s the best match. If
there’s just one, that function is chosen. If more than one are otherwise tied, but only one
is a non template function, that non template function is chosen. If more than one candi-
date are otherwise tied and all are template functions, but one template is more specialized
than the rest, that one is chosen. If there are two or more equally good non template
functions, or if there are two or more equally good template functions, none of which is
more specialized than the rest, the function call is ambiguous and an error. If there are no
matching calls, of course, that is also an error.

Function Templates

Making Your Own Choices

In some circumstances, you can lead the compiler to make the choice you want by suit-
ably writing the function call. Consider Listing 8.15, which, by the way, eliminates the
template prototype and places the template function definition at the top of the file. As
with regular functions, a template function definition can act as its own prototype if it
appears before the function is used.

Listing 8.15 choices.cpp

// choices.cpp -- choosing a template
#include <iostream>

template<class T> // or template <typename T>
T lesser(T a, T b) /] #1

{

return a < b ? a : b;

int lesser (int a, int b) // #2
{
a=a<0?-a:a;
b=b<0?-b: b;
return a < b ? a : b;

int main()

using namespace std;
int m = 20;

int n = -30;

double x = 15.5;
double y = 25.9;

cout << lesser(m, n) << endl; // use #2
cout << lesser(x, y) << endl; // use #1 with double
cout << lesser<>(m, n) << endl; // use #1 with int

cout << lesser<int>(x, y) << endl; // use #1 with int

return 0;

(The final function call converts double to int, and some compilers will issue warn-
ings about that.)

437

438

Chapter 8 Adventures in Functions

Here is the program output:
20
15.5
-30
15

Listing 8.15 provides a template that returns the lesser of two values and a standard
function that returns the smaller absolute value of two values. If a function definition
appears before its first use, the definition acts as a prototype, so this example omits the
prototypes. Consider the following statement:

cout << lesser(m, n) << endl; // use #2

The function call arguments match both the template function and the non template
function, so the non template function is chosen, and it returns the value 20.

Next, the function call in the statement matches the template, with type T taken to
be double:

cout << lesser(x, y) << endl; // use #1 with double

Now consider this statement:

cout << lesser<>(m, n) << endl; // use #1 with int

The presence of the angle brackets in lesser<>(m, n) indicates that the compiler
should choose a template function rather than a non template function, and the compiler,
noting that the actual arguments are type int, instantiates the template using int for T.

Finally, consider this statement:

cout << lesser<int>(x, y) << endl; // use #1 with int

Here we have a request for an explicit instantiation using int for T, and that’s the func-
tion that gets used.The values of x and y are type cast to type int, and the function
returns an int value, which is why the program displays 15 instead of 15.5.

Functions with Multiple Type Arguments
‘Where matters really get involved is when a function call with multiple arguments 1s
matched to prototypes with multiple type arguments. The compiler must look at matches
for all the arguments. If it can find a function that is better than all the other viable func-
tions, it is chosen. For one function to be better than another function, it has to provide at
least as good a match for all arguments and a better match for at least one argument.

This book does not intend to challenge the matching process with complex examples.
The rules are there so that there is a well-defined result for any possible set of function
prototypes and templates.

Template Function Evolution

In the early days of C++, most people didn’t envision how powerful and useful template
functions and template classes would prove to be. (Probably they didn’t even expend their

Function Templates

envisionary powers on the topic.) But clever and dedicated programmers pushed the lim-
its of template techniques and expanded the ideas of what was possible. Feedback from
those who developed familiarity with templates led to changes that were incorporated
into the C++98 Standard as well as the addition of the Standard Template Library. Since
then, template programmers have continued to explore the possibilities offered by the
genre, and occasionally they bump up against limitations. Their feedback has led to some
changes in the C++11 Standard. We’ll look at a couple of related problems now and their
solutions.

What’s That Type?

One problem is that when you write a template function, it’s not always possible in
C++98 to know what type to use in a declaration. Consider this partial example:
template<class T1l, class T2>

void ft (Tl x, T2 y)

{

?type? xXpy = X + Y;

‘What should the type for xpy be? We don’t know in advance how £t () might be used.
The proper type might be T1 or T2 or some other type altogether. For example, T1 could
be double and T2 could be int, in which case the type of the sum is double. Or T1 could
be short and T2 could be int, in which case the type of the sum is int. Or suppose T1 is
short and T2 is char. Then addition invokes automatic integer promotions, and the
resultant type is int. Also the + operator can be overloaded for structures and classes, com-
plicating the options further. Therefore, in C++98 there is no obvious choice for the type
of xpy.

The decltype Keyword (C++11)
The C++11 solution is a new keyword: decltype. It can be used in this way:
int x;

decltype (x) y; // make y the same type as x

The argument to decltype can be an expression, so in the £t () example, we could use
this code:

decltype(x + y) xpy; // make xpy the same type as x + y
Xpy = X + Y,
Alternatively, we could combine these two statements into an initialization:

decltype(x + y) Xpy = X + V;

439

440 Chapter 8 Adventures in Functions

So we can fix the £t () template this way:

template<class T1, class T2>
void ft (Tl x, T2 y)

{

decltype(x + y) Xpy = X + V;

The decltype facility is a bit more complex than it might appear from these examples.
The compiler has to go through a checklist to decide on the type. Suppose we have the
following;:

decltype (expression) var;

Here’s a somewhat simplified version of the list.
Stage 1: If expression is an unparenthesized identifier (that is, no additional paren-
theses), then var is of the same type as the identifier, including qualifiers such as const:

double x =
double y =
double &rx =

5.5;
7.

i

* X w0 Ul

const double pd;
decltype (x) w; // w is type double
decltype(rx) u = y; // u is type double &

decltype (pd) v; // v is type const double *

Stage 2: If expression is a function call, then var has the type of the function
return type:

long indeed (int) ;
decltype (indeed(3)) m; // m is type int

Note

The call expression isn’'t evaluated. In this case, the compiler examines the prototype to
get the return type; there’s no need to actually call the function.

Stage 3: If expression is an lvalue, then var is a reference to the expression type.
This might seem to imply that earlier examples such as w should have been reference
types, given that w is an Ivalue. However, keep in mind that case was already captured in
Stage 1. For this stage to apply, expression can’t be an unparenthesized identifier. So
what can it be? One obvious possibility is a parenthesized identifier:
double xx = 4.4;
decltype ((xx)) r2 = xx; // r2 is double &
decltype (xxX) W = XX; // w is double (Stage 1 match)

Function Templates

Incidentally, parentheses don’t change the value or lvaluedness of an expression. For
example, the following two statements have the same effect:

xxX = 98.6;
(xx) = 98.6; // () don't affect use of xx

Stage 4: If none of the preceding special cases apply, var is of the same type as

expression:
int j = 3;
int &k = j
int &n = j;

decltype (j+6) 1il; // il type int
decltype(100L) i2; // i2 type long
decltype (k+n) 13; // 13 type int;

Note that although k and n are references, the expression k+n is not a reference; it’s just
the sum of two ints, hence an int.
If you need more than one declaration, you can use typedef with decltype:

template<class T1l, class T2>
void ft (Tl x, T2 vy)

{

typedef decltype(x + y) xytype;

xytype xXpy = X + Vi

xytype arr[10];

xytype & rxy = arr[2]; // rxy a reference

Alternative Function Syntax (C++11 Trailing Return Type)
The decltype mechanism by itself leaves another related problem unsolved. Consider this
incomplete template function:

template<class T1l, class T2>
?type? gt (Tl x, T2 y)

{

return x + y;

Again, we don’t know in advance what type results from adding x and y. It might seem
that we could use decltype (x + y) for the return type. Unfortunately, at that point in
the code, the parameters x and y have not yet been declared, so they are not in scope (vis-
ible and usable to the compiler). The decltype specifier has to come after the parameters
are declared. To make this possible, C++11 allows a new syntax for declaring and defining
functions. Here’s how it works using built-in types. The prototype

441

442

Chapter 8 Adventures in Functions

double h(int x, float y);

can be written with this alternative syntax:

auto h(int x, float y) -> double;

This moves the return type to after the parameter declarations. The combination ->
double is called a trailing return type. Here, auto, in another new C++11 role, is a place-
holder for the type provided by the trailing return type. The same form would be used
with the function definition:

auto h(int x, float y) -> double
{/* function body */};

Combining this syntax with decltype leads to the following solution for specifying
the return type for gt ():
template<class T1l, class T2>

auto gt (Tl x, T2 y) -> decltype(x + y)

{

return x + y;

Now decltype comes after the parameter declarations, so x and y are in scope and can
be used.

Summary

C++ has expanded C function capabilities. By using an inline keyword with a function
definition and by placing that definition ahead of the first call to that function, you sug-
gest to the C++ compiler that it make the function inline. That is, instead of having the
program jump to a separate section of code to execute the function, the compiler replaces
the function call with the corresponding code inline. An inline facility should be used
only when the function is short.

A reference variable is a kind of disguised pointer that lets you create an alias (that is, a
second name) for a variable. Reference variables are primarily used as arguments to func-
tions that process structures and class objects. Normally, an identifier declared as a refer-
ence to a particular type can refer only to data of that type. However, when one class is
derived from another, such as ofstream from ostream, a reference to the base type may
also refer to the derived type.

C++ prototypes enable you to define default values for arguments. If a function call
omits the corresponding argument, the program uses the default value. If the function
includes an argument value, the program uses that value instead of the default. Default
arguments can be provided only from right to left in the argument list. Thus, if you pro-
vide a default value for a particular argument, you must also provide default values for all
arguments to the right of that argument.

Chapter Review

A function’s signature is its argument list. You can define two functions having the
same name, provided that they have different signatures. This is called function
polymorphism, or function overloading. Typically, you overload functions to provide essentially
the same service to different data types.

Function templates automate the process of overloading functions.You define a func-
tion by using a generic type and a particular algorithm, and the compiler generates
appropriate function definitions for the particular argument types you use in a program.

Chapter Review

1. What kinds of functions are good candidates for inline status?

2. Suppose the song () function has this prototype:

void song(const char * name, int times);

a. How would you modify the prototype so that the default value for times
is 17

b. What changes would you make in the function definition?

c. Can you provide a default value of "0, My Papa" for name?

3. Write overloaded versions of iquote (), a function that displays its argument
enclosed in double quotation marks. Write three versions: one for an int argument,
one for a double argument, and one for a string argument.

4. The following is a structure template:

struct box

{
char maker[40];
float height;
float width;
float length;
float volume;

a. Write a function that has a reference to a box structure as its formal argu-
ment and displays the value of each member.

b. Write a function that has a reference to a box structure as its formal argu-
ment and sets the volume member to the product of the other three dimen-
sions.

5. What changes would need be made to Listing 7.15 so that the functions £i11 ()
and show () use reference parameters?

443

444

Chapter 8 Adventures in Functions

6. The following are some desired effects. Indicate whether each can be accom-

plished with default arguments, function overloading, both, or neither. Provide
appropriate prototypes.

a.

mass (density, volume) returns the mass of an object having a density of
density and a volume of volume, whereas mass (density) returns the mass
having a density of density and a volume of 1.0 cubic meters. All quantities
are type double.

repeat (10, "I'm OK") displays the indicated string 10 times, and
repeat ("But you're kind of stupid") displays the indicated string 5
times.

average (3,6) returns the int average of two int arguments, and
average (3.0, 6.0) returns the double average of two double values.

mangle ("I'm glad to meet you") returns the character I or a pointer to
the string "I'm mad to gleet you",depending on whether you assign the
return value to a char variable or to a char* variable.

7. Write a function template that returns the larger of its two arguments.

8. Given the template of Chapter Review Question 7 and the box structure of Chap-
ter Review Question 4, provide a template specialization that takes two box argu-

ments and returns the one with the larger volume.

9. What types are assigned to v1, v2,v3, v4, and v5 in the following code (assuming
the code is part of a complete program)?

int g(int x);

float m = 5.5f;
float & rm = m;

decltype (m) vl = m;

decltype (rm) v2 = m;

decltype
decltype

I
decltype((m)) v3 = m;

(

(

g(100)) v4;
2

.0 * m) v5;

Programming Exercises

1. Write a function that normally takes one argument, the address of a string, and
prints that string once. However, if a second, type int, argument is provided and is
nonzero, the function should print the string a number of times equal to the num-
ber of times that function has been called at that point. (Note that the number of
times the string is printed is not equal to the value of the second argument; it is

Programming Exercises

equal to the number of times the function has been called.) Yes, this is a silly func-
tion, but it makes you use some of the techniques discussed in this chapter. Use the
function in a simple program that demonstrates how the function works.

The candyBar structure contains three members. The first member holds the brand
name of a candy bar. The second member holds the weight (which may have a frac-
tional part) of the candy bar, and the third member holds the number of calories
(an integer value) in the candy bar. Write a program that uses a function that takes
as arguments a reference to CandyBar, a pointer-to-char, a double, and an int and
uses the last three values to set the corresponding members of the structure. The last
three arguments should have default values of “Millennium Munch,” 2.85, and 350.
Also the program should use a function that takes a reference to a CandyBar as an
argument and displays the contents of the structure. Use const where appropriate.

Write a function that takes a reference to a string object as its parameter and that
converts the contents of the string to uppercase. Use the toupper () function
described in Table 6.4 of Chapter 6. Write a program that uses a loop which allows
you to test the function with different input. A sample run might look like this:
Enter a string (g to quit): go away

GO AWAY

Next string (g to quit): good grief!

GOOD GRIEF!

Next string (g to quit): g

Bye.

The following is a program skeleton:

#include <iostream>
using namespace std;

#include <cstring> // for strlen(), strcpyl()

struct stringy {
char * str; // points to a string
int ct; // length of string (not counting '\0')
}i

// prototypes for set(), show(), and show() go here

int main()

{
stringy beany;
char testing[] = "Reality isn't what it used to be.";

set (beany, testing); // first argument is a reference,
// allocates space to hold copy of testing,
// sets str member of beany to point to the
// new block, copies testing to new block,
// and sets ct member of beany

445

446

Chapter 8 Adventures in Functions

show (beany) ; // prints member string once
show (beany, 2); // prints member string twice
testing[0] = 'D';
testing[1l] = 'u';
show (testing) ; // prints testing string once

show (testing, 3); // prints testing string thrice
show ("Done!") ;
return 0;

Complete this skeleton by providing the described functions and prototypes. Note
that there should be two show () functions, each using default arguments. Use
const arguments when appropriate. Note that set () should use new to allocate
sufficient space to hold the designated string. The techniques used here are similar
to those used in designing and implementing classes. (You might have to alter the
header filenames and delete the using directive, depending on your compiler.)

Write a template function max5 () that takes as its argument an array of five items
of type T and returns the largest item in the array. (Because the size is fixed, it can
be hard-coded into the loop instead of being passed as an argument.) Test it in a
program that uses the function with an array of five int value and an array of five
double values.

Write a template function maxn () that takes as its arguments an array of items of
type T and an integer representing the number of elements in the array and that
returns the largest item in the array. Test it in a program that uses the function tem-
plate with an array of six int value and an array of four double values.The pro-
gram should also include a specialization that takes an array of pointers-to-char as
an argument and the number of pointers as a second argument and that returns the
address of the longest string. If multiple strings are tied for having the longest
length, the function should return the address of the first one tied for longest. Test
the specialization with an array of five string pointers.

Modify Listing 8.14 so that it uses two template functions called SumArray () to
return the sum of the array contents instead of displaying the contents. The pro-
gram now should report the total number of things and the sum of all the debts.

9

Memory Models and
Namespaces

In this chapter you’ll learn about the following:

= Separate compilation of programs
= Storage duration, scope, and linkage
= Placement new

= Namespaces

C++ offers many choices for storing data in memory.You have choices for how long
data remains in memory (storage duration) and choices for which parts of a program have
access to data (scope and linkage).You can allocate memory dynamically by using new,
and placement new offers a variation on that technique. The C++ namespace facility pro-
vides additional control over access. Larger programs typically consist of several source
code files that may share some data in common. Such programs involve the separate com-
pilation of the program files, and this chapter begins with that topic.

Separate Compilation

C++, like C, allows and even encourages you to locate the component functions of a
program in separate files. As Chapter 1,“Getting Started with C++,” describes, you can
compile the files separately and then link them into the final executable program. (A
C++ compiler typically compiles programs and also manages the linker program.) If you
modify just one file, you can recompile just that one file and then link it to the previously
compiled versions of the other files. This facility makes it easier to manage large programs.
Furthermore, most C++ environments provide additional facilities to help with the man-
agement. Unix and Linux systems, for example, have make programs, which keep track of
which files a program depends on and when they were last modified. If you run make,
and it detects that you’ve changed one or more source files since the last compilation,
make remembers the proper steps needed to reconstitute the program. Most integrated
development environments (IDEs), including Embarcadero C++ Builder, Microsoft Visual

448

Chapter 9 Memory Models and Namespaces

C++, Apple Xcode, and Freescale CodeWarrior, provide similar facilities with their Pro-
ject menus.

Let’s look at a simple example. Instead of looking at compilation details, which depend
on the implementation, let’s concentrate on more general aspects, such as design.

Suppose, for example, that you decide to break up the program in Listing 7.12 by plac-
ing the two supporting functions in a separate file. Recall that Listing 7.12 converts rec-
tangular coordinates to polar coordinates and then displays the result. You can’t simply cut
the original file on a dotted line after the end of main ().The problem is that main () and
the other two functions use the same structure declarations, so you need to put the decla-
rations in both files. Simply typing them in is an invitation to error. Even if you copy the
structure declarations correctly, you have to remember to modify both sets of declarations
if you make changes later. In short, spreading a program over multiple files creates new
problems.

Who wants more problems? The developers of C and C++ didn’t, so they’ve provided
the #include facility to deal with this situation. Instead of placing the structure declara-
tions in each file, you can place them in a header file and then include that header file in
each source code file. That way, if you modify the structure declaration, you can do so just
once, in the header file. Also you can place the function prototypes in the header file.
Thus, you can divide the original program into three parts:

= A header file that contains the structure declarations and prototypes for functions
that use those structures

= A source code file that contains the code for the structure-related functions

= A source code file that contains the code that calls the structure-related functions

This is a useful strategy for organizing a program. If, for example, you write another
program that uses those same functions, you can just include the header file and add the
functions file to the project or make list. Also this organization is consistent with the OOP
approach. One file, the header file, contains the definition of the user-defined types. A
second file contains the function code for manipulating the user-defined types. Together,
they form a package you can use for a variety of programs.

You shouldn’t put function definitions or variable declarations into a header file. That
might work for a simple setup but usually it leads to trouble. For example, if you had a
function definition in a header file and then included the header file in two other files
that are part of a single program, you'd wind up with two definitions of the same function
in a single program, which is an error, unless the function is inline. Here are some things
commonly found in header files:

= Function prototypes
= Symbolic constants defined using #define or const
= Structure declarations

= Class declarations

Separate Compilation

= Template declarations

= Inline functions

It’s okay to put structure declarations in a header file because they don’t create vari-
ables; they just tell the compiler how to create a structure variable when you declare one
in a source code file. Similarly, template declarations aren’t code to be compiled; they are
instructions to the compiler on how to generate function definitions to match function
calls found in the source code. Data declared const and inline functions have special link-
age properties (described shortly) that allow them to be placed in header files without
causing problems.

Listings 9.1,9.2, and 9.3 show the result of dividing Listing 7.12 into separate parts.
Note that you use "coordin.h" instead of <coordin.h> when including the header file.
If the filename is enclosed in angle brackets, the C++ compiler looks at the part of the
host system’s file system that holds the standard header files. But if the filename is
enclosed in double quotation marks, the compiler first looks at the current working
directory or at the source code directory (or some such choice, depending on the com-
piler). If it doesn’t find the header file there, it then looks in the standard location. So you
should use quotation marks, not angle brackets, when including your own header files.

Figure 9.1 outlines the steps for putting this program together on a Unix system.
Note that you just give the cc compile command, and the other steps follow automati-
cally. The g++ and gpp command-line compilers and the Borland C++ command-line
compiler (bcc32.exe) also behave that way. Apple Xcode, Embarcadero C++ Builder,
and Microsoft Visual C++ go through essentially the same steps, but, as outlined in
Chapter 1, you initiate the process differently, using menus that let you create a project
and associate source code files with it. Note that you only add source code files, not
header files, to projects. That’s because the #include directive manages the header files.
Also you shouldn’t use #include to include source code files because that can lead to
multiple declarations.

Caution

In IDEs, don’t add header files to the project list and don’t use #include to include source
code files in other source code files.

Listing 9.1 coordin.h

// coordin.h -- structure templates and function prototypes
// structure templates

#ifndef COORDIN_H_

#define COORDIN_H_

struct polar

{

double distance; // distance from origin
double angle; // direction from origin

}i

449

450

Chapter 9 Memory Models and Namespaces

struct rect

{

double x; // horizontal distance from origin
double y; // vertical distance from origin

}i
// prototypes
polar rect_to_polar(rect xypos);

void show_polar (polar dapos);

#endif

1. Give UNIX compile command for two source files:
CC filel.cpp file2.ccp
2. Preprocessor combines included files with source code:

// filel.cpp o
#include <iostream>~\\{:// iostream :}§~__#. 1 g g trae
using namespace std; incluade <ios Pea?d'
#include "coordin.h" // cmath }_ ;E;Q%ugzmizrpn::ﬁj ;
int main §
? o) #include "coordin.h"
{// coordln.h}
: . Polar rect_to_polar(...

} {

}

void show_polar(...)

{

}

temp1.cpp ----temporary files - --- temp2.cpp

3. Compiler creates an object code
file for each source code file:

filel.o file2.0

4. Linker combines object code files
with library code and startup code
to produce executable file:

a.out [«

Library code, — >
startup code

Figure 9.1 Compiling a multifile C++ program on a Unix system.

Separate Compilation

Header File Management

You should include a header file just once in a file. That might seem to be an easy thing to
remember, but it’s possible to include a header file several times without knowing you did
so. For example, you might use a header file that includes another header file. There’s a
standard C/C++ technique for avoiding multiple inclusions of header files. It's based on the
preprocessor #ifndef (for if not defined) directive. A code segment like the following
means “process the statements between the #ifndef and #endif only if the name
COORDIN H has not been defined previously by the preprocessor #define directive”:

#ifndef COORDIN H
#endif
Normally, you use the #define statement to create symbolic constants, as in the following:

#define MAXIMUM 4096

But simply using #define with a name is enough to establish that a name is defined, as in
the following:

#define COORDIN_H_

The technique that Listing 9.1 uses is to wrap the file contents in an #ifndef:

#ifndef COORDIN H

#define COORDIN_H_

// place include file contents here
#endif

The first time the compiler encounters the file, the name COORDIN H should be undefined.
(I chose a name based on the include filename, with a few underscore characters tossed
in to create a name that is unlikely to be defined elsewhere.) That being the case, the com-
piler looks at the material between the #ifndef and the #endif, which is what you want.
In the process of looking at the material, the compiler reads the line defining COORDIN_H_.
If it then encounters a second inclusion of coordin.h in the same file, the compiler notes
that coorRDIN H is defined and skips to the line following the #endif. Note that this
method doesn’t keep the compiler from including a file twice. Instead, it makes the compiler
ignore the contents of all but the first inclusion. Most of the standard C and C++ header
files use this guarding scheme. Otherwise you might get the same structure defined twice in
one file, and that will produce a compile error.

Listing 9.2 filel.cpp

// filel.cpp -- example of a three-file program

#include <iostream>

#include "coordin.h" // structure templates, function prototypes
using namespace std;

int main()

451

452 Chapter 9 Memory Models and Namespaces

rect rplace;
polar pplace;

cout << "Enter the x and y values: ";
while (cin >> rplace.x >> rplace.y) // slick use of cin
{
pplace = rect_to_polar(rplace) ;
show_polar (pplace) ;
cout << "Next two numbers (g to quit): ";
1
cout << "Bye!\n";
return 0;

Listing 9.3 file2.cpp

// file2.cpp -- contains functions called in filel.cpp

#include <iostream>

#include <cmath>

#include "coordin.h" // structure templates, function prototypes

// convert rectangular to polar coordinates
polar rect_to polar(rect xypos)

using namespace std;

polar answer;

answer.distance =

sgrt (Xypos.X * Xypos.X + Xypos.y * Xypos.y);
answer.angle = atan2 (xypos.y, Xypos.X);
return answer; // returns a polar structure

// show polar coordinates, converting angle to degrees
void show polar (polar dapos)
{

using namespace std;

const double Rad_to_deg = 57.29577951;

cout << "distance = " << dapos.distance;
cout << ", angle = " << dapos.angle * Rad _to deg;
cout << " degrees\n";

Storage Duration, Scope, and Linkage

Compiling and linking these two source code files along with the new header file pro-
duces an executable program. Here is a sample run:

Enter the x and y values: 120 80

distance = 144.222, angle = 33.6901 degrees
Next two numbers (g to quit): 120 50
distance = 130, angle = 22.6199 degrees
Next two numbers (g to quit): q

By the way, although we’ve discussed separate compilation in terms of files, the C++
Standard uses the term translation unit instead of file in order to preserve greater generality;
the file metaphor is not the only possible way to organize information for a computer. For
simplicity, this book will use the term file, but feel free to translate that to translation unit.

Multiple Library Linking

The C++ Standard allows each compiler designer the latitude to implement name decora-
tion or mangling (see the sidebar “What Is Name Decoration?” in Chapter 8, “Adventures in
Functions”) as it sees fit, so you should be aware that binary modules (object-code files)
created with different compilers will, most likely, not link properly. That is, the two compilers
will generate different decorated names for the same function. This name difference will
prevent the linker from matching the function call generated by one compiler with the func-
tion definition generated by a second compiler. When attempting to link compiled modules,
you should make sure that each object file or library was generated with the same compiler.
If you are provided with the source code, you can usually resolve link errors by recompiling
the source with your compiler.

Storage Duration, Scope, and Linkage

Now that you’ve seen a multifile program, it’s a good time to extend the discussion of
memory schemes in Chapter 4,“Compound Types,” because storage categories affect how
information can be shared across files. It might have been a while since you last read
Chapter 4, so let’s review what it says about memory. C++ uses three separate schemes
(four under C++11) for storing data, and the schemes differ in how long they preserve
data in memory:

= Automatic storage duration—Variables declared inside a function definition—
including function parameters—have automatic storage duration. They are created
when program execution enters the function or block in which they are defined,
and the memory used for them is freed when execution leaves the function or
block. C++ has two kinds of automatic storage duration variables.

= Static storage duration—Variables defined outside a function definition or else
by using the keyword static have static storage duration. They persist for the entire
time a program is running. C++ has three kinds of static storage duration variables.

= Thread storage duration (C++11)—These days multicore processors are com-
mon. These are CPUs that can handle several execution tasks simultaneously. This
allows a program to split computations into separate threads that can be processed

453

454 Chapter 9 Memory Models and Namespaces

concurrently. Variables declared with the thread local keyword have storage that
persists for as long as the containing thread lasts. This book does not venture into
concurrent programming.

= Dynamic storage duration—Memory allocated by the new operator persists
until it is freed with the delete operator or until the program ends, whichever
comes first. This memory has dynamic storage duration and sometimes is termed
the free store or the heap.

You’ll get the rest of the story now, including fascinating details about when variables
of different types are in scope, or visible (that is, usable by the program), and about linkage,
which determines what information is shared across files.

Scope and Linkage

Scope describes how widely visible a name is in a file (translation unit). For example, a vari-
able defined in a function can be used in that function but not in another, whereas a vari-
able defined in a file above the function definitions can be used in all the functions. Linkage
describes how a name can be shared in different units. A name with external linkage can be
shared across files, and a name with internal linkage can be shared by functions within a sin-
gle file. Names of automatic variables have no linkage because they are not shared.

A C++ variable can have one of several scopes. A variable that has local scope (also
termed block scope) is known only within the block in which it is defined. Recall that a
block is a series of statements enclosed in braces. A function body, for example, is a block,
but you can have other blocks nested within the function body. A variable that has global
scope (also termed file scope) 1s known throughout the file after the point where it is
defined. Automatic variables have local scope, and a static variable can have either scope,
depending on how it is defined. Names used in a function prototype scope are known just
within the parentheses enclosing the argument list. (That’s why it doesn’t really matter
what they are or if they are even present.) Members declared in a class have class scope (see
Chapter 10, “Objects and Classes”).Variables declared in a namespace have namespace scope.
(Now that namespaces have been added to the C++ language, the global scope has
become a special case of namespace scope.)

C++ functions can have class scope or namespace scope, including global scope, but
they can’t have local scope. (Because a function can’t be defined inside a block, if a func-
tion were to have local scope, it could only be known to itself and hence couldn’t be
called by another function. Such a function couldn’t function.)

The various C++ storage choices are characterized by their storage duration, their
scope, and their linkage. Let’s look at C++’s storage classes in terms of these properties. We
begin by examining the situation before namespaces were added to the mix and then see
how namespaces modify the picture.

Storage Duration, Scope, and Linkage

Automatic Storage Duration

Function parameters and variables declared inside a function have, by default, automatic
storage duration. They also have local scope and no linkage. That is, if you declare a vari-
able called texas in main () and you declare another variable with the same name in a
function called 0il (), you've created two independent variables, each known only in the
function in which it’s defined. Anything you do to the texas in 0il () has no effect on
the texas in main (), and vice versa. Also each variable is allocated when program execu-
tion enters the innermost block containing the definition, and each fades from existence
when execution leaves that block. (Note that the variable is allocated when execution
enters the block, but the scope begins only after the point of declaration.)

If you define a variable inside a block, the variable’s persistence and scope are confined
to that block. Suppose, for example, that you define a variable called teledeli at the
beginning of main (). Now suppose you start a new block within main () and define a
new variable, called websight, in the block.Then, teledeli is visible in both the outer
and inner blocks, whereas websight exists only in the inner block and is in scope only
from its point of definition until program execution passes the end of the block:

int main()
{
int teledeli = 5;
{ // websight allocated
cout << "Hello\n";

int websight = -2; // websight scope begins
cout << websight << ' ' << teledeli << endl;
} // websight expires

cout << teledeli << endl;

}// teledeli expires

But what if you name the variable in the inner block teledeli instead of websight so
that you have two variables of the same name, with one in the outer block and one in the
inner block? In this case, the program interprets the teledeli name to mean the local
block variable while the program executes statements within the block. We say the new
definition hides the prior definition. The new definition is in scope, and the old definition
is temporarily out of scope. When the program leaves the block, the original definition
comes back into scope (see Figure 9.2).

Listing 9.4 illustrates how automatic variables are localized to the functions or blocks
that contain them.

455

456 Chapter 9 Memory Models and Namespaces

Listing 9.4

int teledeli; ———
teledeli # 1
in scope
{
teledeli # 2 int teledeli; teledeli teledeli
in scope g #2 #1
hides teledeli # 1 | |* "~ €exists exists
i » |
teledeli # 1
in scope]
again ce
}

Figure 9.2 Blocks and scope.

autoscp.cpp

// autoscp.cpp -- illustrating scope of automatic variables

#include <iostream>

void oil (int x);

int main()

{

using namespace std;

int texas = 31;

int year

cout
cout
cout
cout

<<

<<

<<

<<

= 2011;
"In main(), texas = " << texas << ", &texas = ";
&texas << endl;

"In main(), year = " << year << ", &year = ";
&year << endl;

oil (texas) ;

cout
cout
cout
cout

<<

<<

<<

<<

"In main(), texas = " << texas << ", &texas = ";
&texas << endl;

"In main(), year = " << year << ", &year = ";
&year << endl;

return 0;

Storage Duration, Scope, and Linkage

void oil (int x)
using namespace std;
int texas = 5;

cout << "In oil(), texas = " << texas << ", &texas = ";
cout << &texas << endl;
cout << "In 0il(), x = " << X << ", &x = ";
cout << &x << endl;
{ // start a block
int texas = 113;

cout << "In block, texas = " << texas;
cout << ", &texas = " << &texas << endl;
cout << "In block, x = " << X << ", & = ";

cout << &x << endl;

} // end a block
cout << "Post-block texas = " << texas;
cout << ", &texas = " << &texas << endl;

Here is the output from the program in Listing 9.4:

In main(), texas = 31, &texas = 0012FED4
In main(), year = 2011, &year = 0012FEC8
In 0il(), texas = 5, &texas = 0012FDE4

In oil(), x = 31, &x = 0012FDF4
In block, texas = 113, &texas = 0012FDDS8
In block, x = 31, & = 0012FDF4
Post-block texas = 5, &texas = 0012FDE4
In main(), texas = 31, &texas = 0012FED4
In main(), year = 2011, &year = 0012FECS8

Notice that each of the three texas variables in Listing 9.4 has its own distinct address
and that the program uses only the particular variable in scope at the moment, so assign-
ing the value 113 to the texas in the inner block in 0il () has no eftect on the other
variables of the same name. (As usual, the actual address values and address format will dif-
fer from system to system.)

Let’s summarize the sequence of events. When main () starts, the program allocates
space for texas and year, and these variables come into scope. When the program calls
0il (), these variables remain in memory but pass out of scope. Two new variables, x and
texas, are allocated and come into scope. When program execution reaches the inner
block in 0il (), the new texas passes out of scope (is hidden) because it is superseded by
an even newer definition. The variable x, however, stays in scope because the block doesn’t
define a new x. When execution exits the block, the memory for the newest texas is
freed, and texas #2 comes back into scope. When the 0il () function terminates, that
texas and x expire, and the original texas and year come back into scope.

457

458 Chapter 9 Memory Models and Namespaces

Changes to auto in C++11

In C++11, the keyword auto is used for automatic type deduction, as you have seen in
Chapters 3, 7, and 8. But in C and in prior versions of C++, auto has an entirely different
meaning. It's used to explicitly identify a variable as having automatic storage:

int froob (int n)

{

auto float ford; // ford has automatic storage

}

Because programmers can use the auto keyword only with variables that are already auto-
matic by default, they rarely bother using it. Its main function is to document that you really
wanted to use a local automatic variable.

In C++11, this usage no longer is valid. The people who prepare standards are reluctant to
introduce new keywords because doing so might invalidate existing code that already uses
that word for other purposes. In this case, it was felt that the old use of auto was rare
enough that it was better to repurpose this keyword rather than introduce a new one.

Initialization of Automatic Variables

You can initialize an automatic variable with any expression whose value will be known
when the declaration is reached. The following example shows the variables x, big, y, and
z being initialized:

int w; // value of w is indeterminate

int x = 5; // initialized with a numeric literal

int big = INT MAX - 1; // initialized with a constant expression

int y = 2 * x; // use previously determined value of x

cin >> w;

int z = 3 * w; // use new value of w

Automatic Variables and the Stack

You might gain a better understanding of automatic variables if you look at how a typical
C++ compiler implements them. Because the number of automatic variables grows and
shrinks as functions start and terminate, the program has to manage automatic variables as
it runs. The usual means is to set aside a section of memory and treat it as a stack for man-
aging the flow and ebb of variables. It’s called a stack because new data is figuratively
stacked atop old data (that is, at an adjacent location, not at the same location) and then
removed from the stack when a program is finished with it. The default size of the stack
depends on the implementation, but a compiler typically provides the option of changing
the size. The program keeps track of the stack by using two pointers. One points to the
base of the stack, where the memory set aside for the stack begins, and one points to the
top of the stack, which is the next free memory location. When a function is called, its
automatic variables are added to the stack, and the pointer to the top points to the next
available free space following the variables. When the function terminates, the top pointer

Storage Duration, Scope, and Linkage

is reset to the value it had before the function was called, effectively freeing the memory
that had been used for the new variables.

A stack is a LIFO (last-in, first-out) design, meaning the last variables added to the
stack are the first to go. The design simplifies argument passing. The function call places
the values of its arguments on top of the stack and resets the top pointer. The called func-
tion uses the description of its formal parameters to determine the addresses of each argu-
ment. For example, Figure 9.3 shows a £ib () function that, when called, passes a 2-byte
int and a 4-byte long.These values go on the stack. When £ib () begins execution, it
associates the names real and tell with the two values. When £ib () terminates, the top-
of-stack pointer is relocated to its former position. The new values aren’t erased, but they
are no longer labeled, and the space they occupy will be used by the next process that
places values on the stack. (Figure 9.3 is somewhat simplified because function calls may
pass additional information, such as a return address.)

Register Variables
C originally introduced the register keyword to suggest that the compiler use a CPU
register to store an automatic variable:

register int count fast; // request for a register variable

The idea was that this would allow faster access to the variable.

Prior to C++11, C++ used the keyword in the same fashion, except that as hardware
and compilers developed in sophistication, the hint was generalized to mean that the vari-
able was heavily used and perhaps the compiler could provide some sort of special treat-
ment. With C++11, even that hint is being deprecated, leaving register as just a way to
explicitly identify a variable as being automatic. Given that register can only be used
with variables that would be automatic anyway, one reason to use this keyword is to indi-
cate that you really do want to use an automatic variable, perhaps one with the same name
as an external variable. This is the same purpose the original use of auto served. The more
important reason for retaining register, however, is to avoid invalidating existing code
that uses that keyword.

Static Duration Variables

C++, like C, provides static storage duration variables with three kinds of linkage: external
linkage (accessible across files), internal linkage (accessible to functions within a single
file), and no linkage (accessible to just one function or to one block within a function). All
three last for the duration of the program; they are less ephemeral than automatic vari-
ables. Because the number of static variables doesn’t change as the program runs, the pro-
gram doesn’t need a special device such as a stack to manage them. Instead, the compiler
allocates a fixed block of memory to hold all the static variables, and those variables stay
present as long as the program executes. Also if you don’t explicitly initialize a static vari-
able, the compiler sets it to 0. Static arrays and structures have all the bits of each element
or member set to 0 by default.

459

460 Chapter 9 Memory Models and Namespaces

1. Stack before function
call (each box represents
2 bytes)
top of stack (next
} addition goes here)
1890 values placed on
2929] the stack earlier
2. Stack after function call }— ;(erc)li(; ifosliagc(l)(e(snli‘/:rte)
function — [-50L- - - }— long value takes 4 bytes
call pushes £ib(18. 50L):
arguments 1o I,—)’ 18 }— int value takes 2 bytes
onto stack
1890
2929
3. Stac':k after fupction] top of stack (next
begins execution addition goes here)
L _5qL- - - te11 function execution
associates formal
void fib(int real, long tell) arguments with
{ 18] real values on stack
} 1890
2929
4. Stack after function
terminates
L - 501- - -
top of stack reset to
18 original position (next
1890 addition goes here)
2929

Figure 9.3 Passing arguments by using a stack.

Note

Classic K&R C does not allow you to initialize automatic arrays and structures, but it does
allow you to initialize static arrays and structures. ANSI C and C++ allow you to initialize both
kinds. But some older C++ translators use C compilers that are not fully ANSI C-compliant. If
you are using such an implementation, you might need to use one of the three varieties of
static storage classes for initializing arrays and structures.

Storage Duration, Scope, and Linkage

Let’s look at how to create the three different kinds of static duration variables; then we
can go on to examine their properties. To create a static duration variable with external
linkage, you declare it outside any block.To create a static duration variable with internal
linkage, you declare it outside any block and use the static storage class modifier. To cre-
ate a static duration variable with no linkage, you declare it inside a block, using the
static modifier. The following code fragment shows these three variations:

int global = 1000; // static duration, external linkage

static int one file = 50; // static duration, internal linkage
int main()

{

void functl(int n)

static int count = 0; // static duration, no linkage
int llama = 0;

void funct2 (int q)

{

As stated previously, all the static duration variables (global, one file,and count,in
this example) persist from the time the program begins execution until it terminates. The
variable count, which is declared inside funct1 (), has local scope and no linkage, which
means it can be used only inside the funct1 () function, just like the automatic variable
1lama. But unlike 11lama, count remains in memory even when the functl () function is
not being executed. Both global and one file have file scope, meaning they can be used
from the point of declaration until the end of the file. In particular, both can be used in
main (), functl (), and funct2 (). Because one file has internal linkage, it can be used
only in the file containing this code. Because global has external linkage, it also can be
used in other files that are part of the program.

All static duration variables share the following initialization feature: An uninitialized
static variable has all its bits set to 0. Such a variable is said to be zero-initialized.

Table 9.1 summarizes the storage class features as used in the pre-namespace era. Next,
we’ll examine the static duration varieties in more detail.

Note that the keyword static has somewhat different meanings in the two uses
shown in Table 9.1.When used with a local declaration to indicate a static variable with
no linkage, static indicates the kind of storage duration. When used with a declaration
outside of a block, static indicates internal linkage; the variable already has static dura-
tion. One might term this keyword overloading, with the precise meaning determined by
context.

461

462

Chapter 9 Memory Models and Namespaces

Table 9.1 The Five Kinds of Variable Storage

Storage

Description Duration Scope Linkage How Declared

Automatic Automatic Block None In a block

Register Automatic Block None In a block with the key-
word register

Static with no Static Block None In a block with the key-

linkage word static

Static with Static File External Outside all functions

external linkage

Static with inter- Static File Internal Outside all functions with
nal linkage the keyword static

Initializing Static Variables

Static variables may be zero-initialized, they may undergo constant expression initialization,
and they may undergo dynamic initialization. As you may have surmised, zero-initialization
means setting the variable to the value zero. For scalar types, the zero is type cast to the
appropriate type. For example, the null pointer, which is represented by 0 in C++ code,
may have a nonzero internal representation, so a pointer variable would be initialized to
that value. Structure members are zero-initialized, and any padding bits are set to zero.

Zero-initialization and constant-expression initialization collectively are called static ini-
tialization. This means the variable is initialized when the compiler processes the file (or
translation unit). Dynamic initialization means the variable is initialized later.

So what determines which form of initialization takes place? First of all, all static vari-
ables are zero-initialized, whether or not any initialization is indicated. Next, if the vari-
able is initialized using a constant expression that the compiler can evaluate solely from
the file contents (including included header files), it can perform constant-expression ini-
tialization. The compiler is prepared to do simple calculations if needed. If there’s not
enough information at this time, the variable will be dynamically initialized. Consider the

following;:

#include <cmath>

int x; // zero-initialization

int y = 5; // constant-expression initialization
long z = 13 * 13; // constant-expression initialization
const double pi = 4.0 * atan(1.0); // dynamic initialization

First, x, v, z, and pi are zero-initialized. Then the compiler evaluates the constant
expressions and initializes y and z to 5 and 169, respectively. But initializing pi requires

Storage Duration, Scope, and Linkage

calling the atan () function, and this has to wait until the function is linked and the pro-
gram executes.

A constant expression is not limited to arithmetic expressions using literal constants. It
can, for example, use the sizeof operator:

int enough = 2 * gizeof (long) + 1; // constant expression initialization

C++11 introduces a new keyword, constexpr, to expand the options for creating con-
stant expressions; this is one of the new C++11 features that this book does not pursue
further.

Static Duration, External Linkage

Variables with external linkage are often simply called external variables. They necessarily
have static storage duration and file scope. External variables are defined outside, and
hence external to, any function. For example, they could be declared above the main ()
function or in a header file.You can use an external variable in any function that follows
the external variable’s definition in the file. Thus, external variables are also termed global
variables, in contrast to automatic variables, which are local variables.

The One Definition Rule
On the one hand, an external variable has to be declared in each file that uses the variable.
On the other hand, C++ has the “one definition rule” (also known as odr), which states
that there can be only one definition of a variable. To satisfy these requirements, C++ has
two kinds of variable declarations. One is the defining declaration or, simply, a definition. It
causes storage for the variable to be allocated. The second is the referencing declaration or,
simply, a declaration. It does not cause storage to be allocated because it refers to an existing
variable.

A referencing declaration uses the keyword extern and does not provide initialization.
Otherwise, a declaration is a definition and causes storage to be allocated:

double up; // definition, up is 0
extern int blem; // blem defined elsewhere
extern char gr = 'z'; // definition because initialized

If you use an external variable in several files, only one file can contain a definition for
that variable (per the one definition rule). But every other file using the variable needs to
declare that variable using the keyword extern:

// £ileOl.cpp

extern int cats = 20; // definition because of initialization
int dogs = 22; // also a definition

int fleas; // also a definition

// £ile02.cpp
// use cats and dogs from fileOl.cpp
extern int cats; // not definitions because they use

463

464 Chapter 9 Memory Models and Namespaces

extern int dogs; // extern and have no initialization

// £ile98.cpp

// use cats, dogs, and fleas from fileOl.cpp
extern int cats;

extern int dogs;

extern int fleas;

In this case, all the files use the cats and dogs variables defined in £i1e01.cpp. How-
ever, file02.cpp doesn’t re-declare the fleas variable, so it can’t access it. The extern in
file0l.cpp isn't really needed because the effect is the same if it is omitted (also see

Figure 9.4).
/] filel.cpp /] file2.cpp
#include <iostream> #include <iostream>
using namespace std; using namespace std;
// function prototypes // function prototypes
#include "mystuff.h" #include "mystuff.h"
// defining an external variable // referencing an external variable
int process_status = 0; extern int process_status;
void promise (); int manipulate(int n)
int main()
{
}
}
char * remark(char * str)
void promise () {
{
}
}
This file defines the variable This file uses extern to instruct the program
process_status, causing the compiler to use the variable process_status that
to allocate space for it. was defined in another file.

Figure 9.4 Defining declaration and referencing declaration.

Note that the one definition rule doesn’t mean that there can be only one variable
with a given name. For example, automatic variables sharing the same name but defined
in different functions are separate variables, independent of one another, and each having
its own address. Also as later examples show, a local variable can hide a global variable of
the same name. However, although a program can have different variables of the same
name, each version can have only one definition.

Storage Duration, Scope, and Linkage

What if you define an external variable and then declare a variable by the same name

inside a function? The second declaration is interpreted as a definition for an automatic

variable. The automatic variable is the one that is in scope when the program executes

that particular function. Listings 9.5 and 9.6, to be compiled together, illustrate using an

external variable in two files and how an automatic variable hides a global variable of the

same name. The program also shows how you can use the keyword extern to re-declare

an external variable defined earlier and how you can use C++’s scope-resolution operator

to access an otherwise hidden external variable.

Listing 9.5 external.cpp

// external.cpp -- external variables

// compile with support.cpp
#include <iostreams>

using namespace std;

// external variable

double warming = 0.3; //
// function prototypes

void update (double dt);

void local();

int main() //

{

cout << "Global warming is

update(0.1); //
cout << "Global warming is
locall(); //

cout << "Global warming is
return 0;

warming defined

uses global variable

" << warming << " degrees.\n";
call function to change warming
" << warming << " degrees.\n";
call function with local warming
" << warming << " degrees.\n";

Listing 9.6 support.cpp

// support.cpp -- use external
// compile with external.cpp
#include <iostream>

extern double warming; // use

// function prototypes
void update (double dt);
void local();

using std::cout;
void update (double dt) //

{

extern double warming; //

variable

warming from another file

modifies global variable

optional redeclaration

465

466

Chapter 9 Memory Models and Namespaces

warming += dt; // uses global warming
cout << "Updating global warming to " << warming;
cout << " degrees.\n";

void local() // uses local variable

{
double warming = 0.8; // new variable hides external one
cout << "Local warming = " << warming << " degrees.\n";

// Access global variable with the

// scope resolution operator
cout << "But global warming = " << ::warming;
cout << " degrees.\n";

Here is the output from the program:

Global warming is 0.3 degrees.
Updating global warming to 0.4 degrees.
Global warming is 0.4 degrees.

Local warming = 0.8 degrees.

But global warming = 0.4 degrees.
Global warming is 0.4 degrees.

Program Notes
The output of the program in Listings 9.5 and 9.6 illustrates that both main () and
update () can access the external variable warming. Note that the change that update ()
makes to warming shows up in subsequent uses of the variable.

The definition for warming is in Listing 9.5:

double warming = 0.3; // warming defined

Listing 9.6 uses extern to make the warming variable available to the functions in

that file:

extern double warming; // use warming from another file

As the comment indicates, this declaration says, “Use the warming variable defined
externally elsewhere.”

In addition, the update () function re-declares the warming variable by using the key-
word extern.This keyword means “Use the variable by this name previously defined
externally” Because that is what update () would do anyway if you omitted the entire
declaration, this declaration is optional. It serves to document that the function is designed
to use the external variable.

The local() function demonstrates that when you define a local variable that has the
same name as a global variable, the local version hides the global version. The local ()

Storage Duration, Scope, and Linkage

function, for example, uses the local definition of warming when it displays the value of
warming.

C++ goes a step beyond C by offering the scope-resolution operator (: :). When it is pre-
fixed to the name of a variable, this operator means to use the global version of that vari-
able. Thus, local () displays warming as 0.8, but it displays : :warming as 0.4.You’ll
encounter this operator again in namespaces and classes. In terms of clarity and error-
avoidance, it would have been better and safer to use : :warming in the update () function
instead of using just warming and relying on scope rules.

Global Versus Local Variables

Now that you have a choice of using global or local variables, which should you use? At first,
global variables have a seductive appeal—because all functions have access to a global
variable, you don’t have to bother passing arguments. But this easy access has a heavy
price: unreliable programs. Computing experience has shown that the better job your pro-
gram does of isolating data from unnecessary access, the better job the program does in
preserving the integrity of the data. Most often, you should use local variables and pass
data to functions on a need-to-know basis rather than make data available indiscriminately
by using global variables. As you will see, OOP takes this data isolation a step further.
Global variables do have their uses, however. For example, you might have a block of data
that’s to be used by several functions, such as an array of month names or the atomic
weights of the elements. The external storage class is particularly suited to representing
constant data because you can use the keyword const to protect the data from change:

const char * const months[12] =

{

"January", "February", "March", "April", "May",
"June", "July", "August", "September", "October",
"November", "December"

}i

In this example, the first const protects the strings from change, and the second const
makes sure that each pointer in the array remains pointing to the same string to which it
pointed initially.

Static Duration, Internal Linkage

Applying the static modifier to a file-scope variable gives it internal linkage. The differ-
ence between internal linkage and external linkage becomes meaningful in multifile pro-
grams. In that context, a variable with internal linkage is local to the file that contains it.
But a regular external variable has external linkage, meaning that it can be used in differ-
ent files, as the previous example showed.

What if you want to use the same name to denote different variables in different files?
Can you just omit the extern?

467

468

Chapter 9 Memory Models and Namespaces

// filel
int errors = 20; // external declaration

// file2
int errors = 5; // ??known to file2 only??
void froobish()

{

cout << errors; // fails

No, this attempt fails because it violates the one definition rule. The file2 definition
attempts to create an external variable, so the program winds up with two definitions of
errors, which is an error.

But if a file declares a static external variable that has the same name as an ordinary
external variable declared in another file, the static version is the one in scope for that file:
// filel
int errors = 20; // external declaration

// file2
static int errors = 5; // known to file2 only
void froobish()

{

cout << errors; // uses errors defined in file2

This doesn’t violate the one definition rule because the keyword static establishes
that the identifier errors has internal linkage, so no attempt is made to bring in an exter-
nal definition.

Note

In a multifile program, you can define an external variable in one and only one file. All other
files using that variable have to declare that variable with the extern keyword.

You can use an external variable to share data among different parts of a multifile pro-
gram.You can use a static variable with internal linkage to share data among functions
found in just one file. (Namespaces offer an alternative method for this.) Also if you make
a file-scope variable static, you needn’t worry about its name conflicting with file-scope
variables found in other files.

Listings 9.7 and 9.8 show how C++ handles variables with external and internal link-
age. Listing 9.7 (twofilel.cpp) defines the external variables tom and dick and the static
external variable harry.The main () function in that file displays the addresses of the three
variables and then calls the remote access () function, which is defined in a second file.
Listing 9.8 (twofile2.cpp) shows that file. In addition to defining remote access (), the
file uses the extern keyword to share tom with the first file. Next, the file defines a static

Storage Duration, Scope, and Linkage

variable called dick.The static modifier makes this variable local to the file and over-
rides the global definition. Then the file defines an external variable called harry. It can
do so without conflicting with the harry of the first file because the first harry has inter-
nal linkage only. Then the remote access () function displays the addresses of these three
variables so that you can compare them with the addresses of the corresponding variables
in the first file. Remember that you need to compile both files and link them to get the
complete program.

Listing 9.7 twofilel.cpp

// twofilel.cpp -- variables with external and internal linkage
#include <iostream> // to be compiled with two file2.cpp
int tom = 3; // external variable definition

int dick = 30; // external variable definition

static int harry = 300; // static, internal linkage

// function prototype
void remote_access() ;

int main()

{
using namespace std;
cout << "main() reports the following addresses:\n";
cout << &tom << " = &tom, " << &dick << " = &dick, ";
cout << &harry << " = &harry\n";
remote_access () ;
return 0;

Listing 9.8 twofile2.cpp

// twofile2.cpp -- variables with internal and external linkage
#include <iostreams>

extern int tom; // tom defined elsewhere

static int dick = 10; // overrides external dick

int harry = 200; // external variable definition,

// no conflict with twofilel harry

void remote_access()
using namespace std;
cout << "remote access() reports the following addresses:\n";
cout << &tom << " = &tom, " << &dick << " = &dick, ";
cout << &harry << " = &harry\n";

469

470

Chapter 9 Memory Models and Namespaces

Here is the output from the program produced by compiling Listings 9.7 and 9.8
together:

main() reports the following addresses:

0x0041a020 = &tom, 0x0041a024 = &dick, 0x0041a028 = &harry
remote_access() reports the following addresses:
0x0041a020 = &tom, 0x0041a450 = &dick, 0x0041la454 = &harry

As you can see from the addresses, both files use the same tom variable but difterent
dick and harry variables. (The particular address values and formatting may be different
on your system, but the tom addresses will match each other, and the dick and harry
addresses won’t.)

Static Storage Duration, No Linkage

So far, we’ve looked at a file-scope variable with external linkage and a file-scope variable
with internal linkage. Now let’s look at the third member of the static duration family:
local variables with no linkage.You create such a variable by applying the static modifier
to a variable defined inside a block. When you use it inside a block, static causes a local
variable to have static storage duration. This means that even though the variable is known
within that block, it exists even while the block is inactive. Thus a static local variable can
preserve its value between function calls. (Static variables would be useful for reincarna-
tion—you could use them to pass secret account numbers for a Swiss bank to your next
appearance.) Also if you initialize a static local variable, the program initializes the variable
once, when the program starts up. Subsequent calls to the function don'’t reinitialize the
variable the way they do for automatic variables. Listing 9.9 illustrates these points.

Listing 9.9 static.cpp

// static.cpp -- using a static local variable
#include <iostreams>

// constants

const int ArSize = 10;

// function prototype
void strcount (const char * str);

int main()
using namespace std;
char input [ArSize];
char next;

cout << "Enter a line:\n";
cin.get (input, ArSize);
while (cin)

{

Storage Duration, Scope, and Linkage

cin.get (next) ;
while (next != '\n') // string didn't fit!
cin.get (next) ; // dispose of remainder

strcount (input) ;
cout << "Enter next line (empty line to quit):\n";
cin.get (input, ArSize);

}

cout << "Bye\n";

return 0;

void strcount (const char * str)

{

using namespace std;
static int total = 0; // static local variable
int count = 0; // automatic local variable

cout << "\"" << str <<"\" contains ";

while (*str++) // go to end of string
count++;

total += count;

cout << count << " characters\n";

cout << total << " characters total\n";

newline character, there are more characters left on the line. This program then uses a loop
to reject the rest of the line, but you can modify the code to use the rest of the line for the
next input cycle. The program also uses the fact that attempting to read an empty line

Incidentally, the program in Listing 9.9 shows one way to deal with line input that may
exceed the size of the destination array. Recall that the cin.get (input,ArSize) input
method reads up to the end of the line or up to Arsize - 1 characters, whichever comes
first. It leaves the newline character in the input queue. This program uses cin.get (next)
to read the character that follows the line input. If next is a newline character, then the
preceding call to cin.get (input, ArSize) must have read the whole line. If next isn’t a

with get (char *, int) causes cin to test as false.

Here is the output of the program in Listing 9.9:

Enter a line:
nice pants

"nice pant" contains 9 characters

9 characters total

Enter next line (empty line to quit):

thanks
"thanks" contains 6 characters

15 characters total

471

472 Chapter 9 Memory Models and Namespaces

Enter next line (empty line to quit):
parting is such sweet sorrow
"parting i" contains 9 characters

24 characters total

Enter next line (empty line to quit):
ok

"ok" contains 2 characters

26 characters total

Enter next line (empty line to quit):

Bye

Note that because the array size is 10, the program does not read more than nine char-
acters per line. Also note that the automatic variable count is reset to 0 each time the func-
tion is called. However, the static variable total is set to 0 once at the beginning. After
that, total retains its value between function calls, so it’s able to maintain a running total.

Specifiers and Qualifiers

Certain C++ keywords, called storage class specifiers and cv-qualifiers, provide additional
information about storage. Here’s a list of the storage class specifiers:

auto (eliminated as a specifier in C++11)
register

static

extern

thread local (added by C++11)

mutable

You've already seen most of these, and you can use no more than one of them in a sin-
gle declaration, except that thread_local can be used with static or extern.To review,
prior to C++11, the keyword auto could be used in a declaration to document that the
variable is an automatic variable. (In C++11, auto is used for automatic type deduction.)
The keyword register is used in a declaration to indicate the register storage class, which,
in C++11, simply is an explicit way of saying the variable is automatic. The keyword
static, when used with a file-scope declaration, indicates internal linkage. When used
with a local declaration, it indicates static storage duration for a local variable. The keyword
extern indicates a reference declaration—that is, that the declaration refers to a variable
defined elsewhere. The keyword thread_local indicates that the duration of the variable
is the duration of the containing thread. A thread local variable is to a thread much as a
regular static variable is to the whole program.The keyword mutable is explained in terms
of const, so let’s look at the cv-qualifiers first before returning to mutable.

Cv-Qualifiers

Here are the cv-qualifiers:

const
volatile

Storage Duration, Scope, and Linkage

(As you may have guessed, cv stands for const and volatile.) The most commonly used
cv-qualifier is const, and you’ve already seen its purpose: It indicates that memory, after ini-
tialized, should not be altered by a program.We’ll come back to const in a moment.

The volatile keyword indicates that the value in a memory location can be altered
even though nothing in the program code modifies the contents. This is less mysterious
than it sounds. For example, you could have a pointer to a hardware location that contains
the time or information from a port. In this case, the hardware, not the program, changes
the contents. Or two programs may interact, sharing data. The intent of this keyword is to
improve the optimization abilities of compilers. For example, suppose the compiler notices
that a program uses the value of a particular variable twice within a few statements.
Rather than have the program look up the value twice, the compiler might cache the
value in a register. This optimization assumes that the value of the variable doesn’t change
between the two uses. If you don’t declare a variable as volatile, then the compiler can
feel free to make this optimization. If you do declare a variable as volatile, you're telling
the compiler not to make that sort of optimization.

mutable

Now let’s return to mutable.You can use it to indicate that a particular member of a
structure (or class) can be altered even if a particular structure (or class) variable is a const.
For example, consider the following code:

struct data

{

char name [30] ;
mutable int accesses;

}i

const data veep = {"Claybourne Clodde", 0, ... };
strcpy (veep.name, "Joye Joux"); // not allowed
veep.accesses++; // allowed

The const qualifier to veep prevents a program from changing veep’s members, but
the mutable specifier to the accesses member shields accesses from that restriction.
This book doesn’t use volatile or mutable, but there is more to learn about const.

More About const

In C++ (but not C), the const modifier alters the default storage classes slightly. Whereas
a global variable has external linkage by default, a const global variable has internal link-
age by default. That is, C++ treats a global const definition, such as in the following code
fragment, as if the static specifier had been used:

const int fingers = 10; // same as static const int fingers = 10;
int main(void)

{

473

474

Chapter 9 Memory Models and Namespaces

C++ has altered the rules for constant types to make life easier for you. Suppose, for
example, that you have a set of constants that you'd like to place in a header file and that
you use this header file in several files in the same program. After the preprocessor
includes the header file contents in each source file, each source file will contain defini-
tions like this:

const int fingers = 10;
const char * warning = "Wak!";

If global const declarations had external linkage as regular variables do, this would be
an error because of the one definition rule. That is, only one file can contain the preced-
ing declaration, and the other files have to provide reference declarations using the extern
keyword. Moreover, only the declarations without the extern keyword would be able to
initialize values:

// extern would be required if const had external linkage
extern const int fingers; // can't be initialized
extern const char * warning;

So you would need one set of definitions for one file and a difterent set of declarations
for the other files. Instead, because externally defined const data has internal linkage, you
can use the same declarations in all files.

Internal linkage also means that each file gets its own set of constants rather than shar-
ing them. Each definition is private to the file that contains it. This is why it’s a good idea
to put constant definitions in a header file. That way, as long as you include the same
header file in two source code files, they receive the same set of constants.

If, for some reason, you want to make a constant have external linkage, you can use the
extern keyword to override the default internal linkage:

extern const int states = 50; // definition with external linkage

You then must use the extern keyword to declare the constant in all files that use the
constant. This differs from regular external variables, in which you don’t have to use the
keyword extern when you define a variable, but you use extern in other files using that
variable. Keep in mind, however, now that a single const is being shared among files, only
one file can use initialization.

When you declare a const within a function or block, it has block scope, which means
the constant is usable only when the program is executing code within the block. This
means that you can create constants within a function or block and not have to worry
about the names conflicting with constants defined elsewhere.

Functions and Linkage

Like variables, functions have linkage properties, although the selection is more limited
than for variables. C++, like C, does not allow you to define one function inside another,
so all functions automatically have static storage duration, meaning they are all present as
long as the program is running. By default, functions have external linkage, meaning they
can be shared across files.You can, in fact, use the keyword extern in a function prototype

Storage Duration, Scope, and Linkage

to indicate that the function is defined in another file, but that is optional. (For the pro-
gram to find the function in another file, that file must be one of the files being compiled
as part of the program or a library file searched by the linker.) You can also use the key-
word static to give a function internal linkage, confining its use to a single file.You
would apply this keyword to the prototype and to the function definition:

static int private(double x);

static int private (double x)

{

This means the function is known only in that file. It also means you can use the same
name for another function in a different file. As with variables, a static function overrides
an external definition for the file containing the static declaration, so a file containing a
static function definition will use that version of the function even if there is an external
definition of a function that has the same name.

The one definition rule extends to non-inline functions, too. Therefore, every program
shall contain exactly one definition of every non-inline function. For functions with
external linkage, this means that only one file of a multifile program can contain the func-
tion definition. (This file could be a library file rather than one you supply.) However,
each file that uses the function should have the function prototype.

Inline functions are excepted from this rule to allow you to place inline function defi-
nitions in a header file. Thus, each file that includes the header file ends up having the
inline function definition. However, C++ does require that all the inline definitions for a
particular function be identical.

Where C++ Finds Functions

Suppose you call a function in a particular file in a program. Where does C++ look for the
function definition? If the function prototype in that file indicates that the function is static,
the compiler looks only in that file for the function definition. Otherwise, the compiler (and
the linker, too) looks in all the program files. If it finds two definitions, the compiler sends
you an error message because you can have only one definition for an external function. If it
fails to find any definition in the files, the function then searches the libraries. This implies
that if you define a function that has the same name as a library function, the compiler
uses your version rather than the library version. (However, C++ reserves the names of the
standard library functions, so you shouldn’t reuse them.) Some compiler-linkers need
explicit instructions to identify which libraries to search.

Language Linking

Another form of linking, called language linking, affects functions. First, a little background.
A linker needs a different symbolic name for each distinct function. In C, this is simple to
implement because there can be only one C function with a given name. So for internal
purposes, a C compiler might translate a C function name such as spiff to _spiff.The

475

476

Chapter 9 Memory Models and Namespaces

C approach is termed C language linkage. However, C++ can have several functions with
the same C++ name that have to be translated to separate symbolic names. Thus, the C++
compiler indulges in the process of name mangling or name decoration (as discussed in
Chapter 8) to generate different symbolic names for overloaded functions. For example, it
could convert spiff (int) to,say, _spiff_i,and spiff (double, double) to

_spiff_d d.The C++ approach is C++ language linkage.

When the linker looks for a function to match a C++ function call, it uses a different
look-up method than it does to match a C function call. But suppose you want to use a
precompiled function from a C library in a C++ program? For example, suppose you
have this code:

spiff (22); // want spiff (int) from a C library

Its hypothetical symbolic name in the C library file is _spiff, but for our hypothetical
linker, the C++ look-up convention is to look for the symbolic name _spiff_i.To get
around this problem, you can use the function prototype to indicate which protocol to use:

extern "C" void spiff (int); // use C protocol for name look-up
extern void spoff (int); // use C++ protocol for name look-up
extern "C++" void spaff (int); // use C++ protocol for name look-up

The first example here uses C language linkage. The second and third examples use
C++ language linkage; the second does so by default, and the third does so explicitly.

C and C++ language linkage are the only specifiers required by the C++ Standard.
But implementations have the option of providing additional language linkage specifiers.

Storage Schemes and Dynamic Allocation

You’ve seen the five schemes, excluding threaded memory, C++ uses to allocate memory
for variables (including arrays and structures). They don’t apply to memory allocated by
using the C++ new operator (or by using the older C malloc () function). We call that
kind of memory dynamic memory. As you saw in Chapter 4, dynamic memory is controlled
by the new and delete operators, not by scope and linkage rules. Thus, dynamic memory
can be allocated from one function and freed from another function. Unlike automatic
memory, dynamic memory is not LIFO; the order of allocation and freeing depends on
when and how new and delete are used. Typically, the compiler uses three separate mem-
ory chunks: one for static variables (this chunk might be subdivided), one for automatic
variables, and one for dynamic storage.

Although the storage scheme concepts don’t apply to dynamic memory, they do apply
to automatic and static pointer variables used to keep track of dynamic memory. For
example, suppose you have the following statement inside a function:

float * p fees = new float [20];
The 80 bytes (assuming that a £loat is 4 bytes) of memory allocated by new remains in

memory until the delete operator frees it. But the p_fees pointer passes from existence
when program execution exits the block containing this declaration. If you want to have

Storage Duration, Scope, and Linkage

the 80 bytes of allocated memory available to another function, you need to pass or return
its address to that function. On the other hand, if you declare p_fees with external link-
age, the p_fees pointer will be available to all the functions following that declaration in
the file. And by using the following in a second file, you make that same pointer available
in the second file:

extern float * p fees;

Note

Memory allocated by new is typically freed when the program terminates. However, this is
not always true. Under some less robust operating systems, for example, in some circum-
stances a request for a large block of memory can result in a block that is not deleted auto-
matically when the program terminates. The best practice is to use delete to free memory
allocated by new.

Initialization with the new Operator

What if you want to initialize a variable as part of the dynamic memory allocation? With
C++98, you can do so in some instances. C++11 expands what is possible. Let’s look first
at what has been possible.

If you wish to create and initialize storage for one of the scalar built-in types, such as
int or double, you can do so by following the desired type with an initialization value
enclosed in parentheses:
int *pi = new int (6); // *pi set to 6
double * pd = new double (99.99); // *pd set to 99.99

The parentheses syntax also can be used with classes having suitable constructors, but
we haven’t got that far yet.

To initialize an ordinary structure or an array, however, you need C++11 and list-
initialization using braces. The new standard allows the following:
struct where {double x; double y; double z;};

where * one = new where {2.5, 5.3, 7.2}; // C++11
int * ar = new int [4] {2,4,6,7}; // C++11

With C++11, you also can use the brace initialization for single-valued variables:

int *pin = new int {}); // *pi set to 6
double * pdo = new double {99.99}; // *pd set to 99.99

When new Fails

It may be that new can’t find the requested amount of memory. For its first decade, C++
handled that eventuality by having new return a null pointer. Currently, however, new
throws a std: :bad_alloc exception. Chapter 15,“Friends, Exceptions, and More,” pro-
vides some short examples showing how each approach works.

477

478 Chapter 9 Memory Models and Namespaces

new: Operators, Functions, and Replacement Functions
The new and new[] operators call upon two functions:
void * operator new(std::size t); // used by new
void * operator new[](std::size t); // used by new[]
These are termed allocation functions, and they are part of the global namespace. Simi-
larly, there are deallocation functions used by delete and delete [1:

void operator delete(void *);
void operator delete[](void *);

They use the operator-overloading syntax discussed in Chapter 11, “Working with
Classes.” The std::size_t is a typedef for some suitable integer type. A basic state-
ment such as

int * pi = new int;
gets translated into something like this:
int * pi = new(sizeof(int));
And the statement
int * pa = new int[40];
gets translated into something like this:
int * pa = new(40 * sizeof(int));
As you've seen, a statement with a new operator can also provide initialization values,

s0, in general, using the new operator may do more than just call the new() function.
Similarly,

delete pi;

invokes the following function call:

delete (pi);

Interestingly, C++ terms these functions replaceable. That means if you have sufficient
expertise and desire, you can supply replacement functions for new and delete and tailor
them to meet your specific requirements. One option, for instance, is to define replace-
ment functions with class scope so that they can be tailored to fit the allocation needs of a
particular class.Your code would use the new operator as usual, but the new operator
would call upon the replacement new() function.

The Placement new Operator

Normally, the new operator has the responsibility of finding in the heap a block of mem-
ory that is large enough to handle the amount of memory you request. The new operator
has a variation, called placement new, that allows you to specify the location to be used.

A programmer might use this feature to set up his or her own memory-management

Storage Duration, Scope, and Linkage

procedures or to deal with hardware that is accessed via a particular address or to construct
objects in a particular memory location.

To use the placement new feature, you first include the new header file, which provides
a prototype for this version of new. Then you use new with an argument that provides the
intended address. Aside from this argument, the syntax is the same as for regular new. In
particular, you can use placement new either without or with brackets. The following code
fragment shows the syntax for using these four forms of new:

#include <new>
struct chaff
{
char dross[20];
int slag;
}i
char bufferl[50];
char buffer2[500];
int main()
{
chaff *pl, *p2;
int *p3, *p4;
// first, the regular forms of new

pl = new chaff; // place structure in heap
p3 = new int[20]; // place int array in heap
// now, the two forms of placement new
p2 = new (bufferl) chaff; // place structure in bufferl
p4 = new (buffer2) int[20]; // place int array in buffer2

For simplicity, this example uses two static arrays to provide memory space for place-
ment new. So this code allocates space for a chaff structure in bufferl and space for an
array of 20 ints in buffer2.

Now that you’ve made your acquaintance with placement new, let’s look at a sample
program. Listing 9.10 uses both new and placement new to create dynamically allocated
arrays. This program illustrates some important differences between new and placement
new that we’ll discuss after seeing the output.

Listing 9.10 newplace.cpp

// newplace.cpp -- using placement new
#include <iostream>

#include <new> // for placement new
const int BUF = 512;

const int N = 5;

char buffer [BUF]; // chunk of memory
int main()

{

using namespace std;

479

480 Chapter 9 Memory Models and Namespaces

double *pdl, *pd2;
int 1i;
cout << "Calling new and placement new:\n";
pdl = new double[N]; // use heap
pd2 = new (buffer) double[N]; // use buffer array
for (i = 0; 1 < N; i++)
pd2[i] = pdl[i] = 1000 + 20.0 * i;
cout << "Memory addresses:\n" << " heap: " << pdl
<< " static: " << (void *) buffer <<endl;
cout << "Memory contents:\n";
for (i = 0; 1 < N; i++)
{
cout << pdl[i] << " at " << &pdl[i] << "; ";
cout << pd2[i] << " at " << &pd2[i] << endl;

cout << "\nCalling new and placement new a second time:\n";
double *pd3, *pd4;
pd3= new double [N] ; // find new address
pd4 = new (buffer) double[N]; // overwrite old data
for (i = 0; 1 < N; i++)
pd4 [i] = pd3[i] = 1000 + 40.0 * 1i;
cout << "Memory contents:\n";
for (i = 0; 1 < N; i++)
{
cout << pd3[i] << " at " << &pd3[i] << "; ";
cout << pd4[i] << " at " << &pd4[i] << endl;

cout << "\nCalling new and placement new a third time:\n";
delete [] pdil;
pdl= new double [N];
pd2 = new (buffer + N * sizeof (double)) double[N];
for (i = 0; 1 < N; i++)
pd2[i] = pdl[i] = 1000 + 60.0 * i;
cout << "Memory contents:\n";
for (i = 0; 1 < N; i++)
{
cout << pdl[i] << " at " << &pdl[i] << "; ";
cout << pd2[i] << " at " << &pd2[i] << endl;
1
delete [] pdil;
delete [] pd3;
return 0;

Storage Duration, Scope, and Linkage

Here is the output from the program in Listing 9.10 on one system:

Calling new and placement new:
Memory addresses:

heap: 006E4ABO static: 00FD9138
Memory contents:
1000 at 006E4ABO; 1000 at 00FD9138
1020 at 006E4AB8; 1020 at 00FD9140
1040 at O06E4ACO; 1040 at 00FD9148
1060 at 006E4AC8; 1060 at 00FD9150
1080 at 006E4ADO; 1080 at 00FD9158

Calling new and placement new a second time:
Memory contents:

1000 at 006E4B68; 1000 at 00FD9138

1040 at 006E4B70; 1040 at 00FD9140

1080 at 006E4B78; 1080 at 00FD9148

1120 at 006E4B80; 1120 at 00FD9150

1160 at 006E4B88; 1160 at 00FD9158

Calling new and placement new a third time:
Memory contents:

1000 at O06E4ABO; 1000 at 00FD9160

1060 at 006E4AB8; 1060 at 00FD9168

1120 at 006E4ACO; 1120 at O00FDS170

1180 at 006E4AC8; 1180 at O00FDS178

1240 at O006E4ADO; 1240 at 00FD9180

Program Notes

The first thing to note about Listing 9.10 is that placement new does, indeed, place the p2
array in the buffer array; both p2 and buffer have the value 00FD9138.They are, how-
ever, of different types; p1 is pointer-to-double, whereas buffer is pointer-to-char. (By
the way, that’s why the program uses a (void *) cast for buffer; otherwise, cout would
try to display a string.) Meanwhile, regular new locates the p1 array rather far away in
memory, at location 006E4AB0, which is part of the dynamically managed heap.

The second point to note is that the second call to regular new results in new finding a
new block of memory—one beginning at 006E4B68. But the second call to placement
new results in the same block of memory being used as before—that is, the block begin-
ning at 00FD9138.The important fact here is that placement new simply uses the address
that is passed to it; it doesn’t keep track of whether that location has already been used,
and it doesn’t search the block for unused memory. This shifts some of the burden of
memory management to the programmer. For example, the third call to placement new
provides an offset into the buffer array so that new memory is used:

pd2 = new (buffer + N * sizeof (double)) double[N]; // offset of 40 bytes

481

482

Chapter 9 Memory Models and Namespaces

The third point has to do with the use and nonuse of delete. For regular new, the fol-
lowing statement frees up the block of memory beginning at 006E4AB0, and as a result,
the next call to new is able to reuse that block:

delete [] pdil;

In contrast, the program in Listing 9.10 does not use delete to free the memory used
by placement new. In fact, in this case, it can’t. The memory specified by buffer is static
memory, and delete can be used only with a pointer to heap memory allocated by regu-
lar new. That is, the buf fer array is outside the jurisdiction of delete, and the following
statement will produce a runtime error:

delete [] pd2; // won't work

On the other hand, if you use regular new to create a buffer in the first place, you use
regular delete to free that entire block.

Another way you can use placement new is to combine it with new initialization to
place information at a specific hardware address.

You may wonder exactly what the placement new function does. Basically, it does noth-
ing other than return the address passed to it, type casting it to void * so that it can be
assigned to any pointer type. But that’s the default placement new. C++ allows program-
mers to overload placement new.

The situation becomes more involved when you use placement new with class objects.
Chapter 12,“Classes and Dynamic Memory Allocation,” continues this story.

Other Forms of Placement new

Just as regular new invokes a new function with one argument, the standard placement new
invokes a new function with two arguments:

int * pi = new int; // invokes new(sizeof (int))

int * p2 = new(buffer) int; // invokes new(sizeof (int), buffer)

int * p3 = new(buffer) int[40]; // invokes new(40*sizeof (int), buffer)

The placement new function is not replaceable, but it can be overloaded. It needs at
least two parameters, the first of which always is a std: :size_t parameter designating the
number of bytes requested. Any such overloaded function is termed a placement new, even
if the additional parameters don'’t specify a location.

Namespaces

Names in C++ can refer to variables, functions, structures, enumerations, classes, and class
and structure members. When programming projects grow large, the potential for name
contflicts increases. When you use class libraries from more than one source, you can get
name conflicts. For example, two libraries might both define classes named List, Tree,
and Node, but in incompatible ways.You might want the List class from one library and
the Tree from the other, and each might expect its own version of Node. Such conflicts
are termed namespace problems.

Namespaces

The C++ Standard provides namespace facilities to provide greater control over the
scope of names. It took a while for compilers to incorporate namespaces, but, by now,
support has become common.

Traditional C++ Namespaces

Before looking at the new namespace facilities in C++, let’s review the namespace prop-
erties that already exist in C++ and introduce some terminology. This can help make the
idea of namespaces seem more familiar.

One term you need to be aware of is declarative region. A declarative region is a region
in which declarations can be made. For example, you can declare a global variable outside
any function. The declarative region for that variable is the file in which it is declared. If
you declare a variable inside a function, its declarative region is the innermost block in
which it is declared.

A second term you need to be aware of is potential scope. The potential scope for a vari-
able begins at its point of declaration and extends to the end of its declarative region. So
the potential scope is more limited than the declarative region because you can’t use a
variable above the point where it is first defined.

However, a variable might not be visible everywhere in its potential scope. For
instance, it might be hidden by another variable of the same name declared in a nested
declarative region. For example, a local variable declared in a function (for this variable,
the declarative region is the function) hides a global variable declared in the same file (for
this variable, the declarative region is the file). The portion of the program that can actu-
ally see the variable is termed the scope, which is the way we’ve been using the term all
along. Figures 9.5 and 9.6 illustrate the terms declarative region, potential scope, and scope.

C++’ rules about global and local variables define a kind of namespace hierarchy. Each
declarative region can declare names that are independent of names declared in other
declarative regions. A local variable declared in one function doesn’t conflict with a local
variable declared in a second function.

New Namespace Features

C++ now adds the ability to create named namespaces by defining a new kind of declara-
tive region, one whose main purpose is to provide an area in which to declare names. The
names in one namespace don’t conflict with the same names declared in other name-
spaces, and there are mechanisms for letting other parts of a program use items declared in
a namespace. The following code, for example, uses the new keyword namespace to create
two namespaces, Jack and Jill:

namespace Jack {

double pail; // variable declaration
void fetch(); // function prototype

int pal; // variable declaration
struct well { ... }; // structure declaration

}

namespace Jill {

483

484 Chapter 9 Memory Models and Namespaces

double bucket (double n) { ... } // function definition

double fetch; // variable declaration
int pal; // variable declaration
struct Hill { ... }; // structure declaration

Namespaces can be located at the global level or inside other namespaces, but they
cannot be placed in a block. Thus, a name declared in a namespace has external linkage by
default (unless it refers to a constant).

In addition to user-defined namespaces, there is one more namespace, the global name-
space. This corresponds to the file-level declarative region, so what used to be termed global
variables are now described as being part of the global namespace.

The names in any one namespace don’t conflict with names in another namespace.
Thus, the fetch in Jack can coexist with the fetch in Jill, and the Hill in Jill can
coexist with an external Hi11.The rules governing declarations and definitions in a name-
space are the same as the rules for global declarations and definitions.

#include <iostream>

using namespace std;
void orp(int);
int ro = 10;
_ int main()
8 w)
Q
< . @
= int goo; 2}
g =} g
g S for (int 1 = 0; 1 < ro; i++)| =
= o0 <
— L~ { i a
s od int temp = 0; a
>
< =2 C’g.
C sE int goo = temp * i; S
= = -
2 3) =X
& a } 3
= =
54 return 0;
2 w)
s ; ; 19
5 void orp(int ex) el
) g
oy : 8
) g int m; =
b e I
(o] =]
= o { o
4 . _ . (1<)
.g 9 int ro = 2; g-
52
< O
==) B
Q LR o
Q C
A } &

Figure 9.5 Declarative regions.

Namespaces 485

#include <iostream>
using namespace std;

void orp(int);
int ro = 10;

int main()
t
int goo;
e =
for (int i = 0; 1 < ro; i++) b=
=4
int temp = 0; wn 1=
(@]
S Q &
: = * 3. g} o)
5 int goo = temp i & 3
5]) ES e
]
gl 2 } 5 |
Q ‘5 - o 3
= ° return 0; =]
Bt o
= S . .
o 3 void orp(int ex)
o
~ .
int m;

int ro = 2;

Figure 9.6 Potential scope and scope.

Namespaces are open, meaning that you can add names to existing namespaces. For
example, the following statement adds the name goose to the existing list of names in Jil1l:

namespace Jill {
char * goose(const char *);

Similarly, the original Jack namespace provides a prototype for a fetch () function.
You can provide the code for the function later in the file (or in another file) by using the
Jack namespace again:

namespace Jack {
void fetch()

{

486

Chapter 9 Memory Models and Namespaces

Of course, you need a way to access names in a given namespace. The simplest way is
to use : :, the scope-resolution operator, to qualify a name with its namespace:

Jack::pail = 12.34; // use a variable
Jill::Hill mole; // create a type Hill structure
Jack: :fetch() ; // use a function

An unadorned name, such as pail, is termed the unqualified name, whereas a name with
the namespace, as in Jack: :pail, is termed a qualified name.

using Declarations and using Directives
Having to qualify names every time they are used is not always an appealing prospect, so
C++ provides two mechanisms—the using declaration and the using directive—to simplify
using namespace names. The using declaration lets you make particular identifiers avail-
able, and the using directive makes the entire namespace accessible.

The using declaration involves preceding a qualified name with the keyword using:

using Jill::fetch; // a using declaration

A using declaration adds a particular name to the declarative region in which it
occurs. For example, the using declaration of Jill::fetch in main() adds fetch to the
declarative region defined by main (). After making this declaration, you can use the name
fetch instead of Jill: : fetch.The following code fragment illustrates these points:
namespace Jill {

double bucket (double n
double fetch;

—_
—

struct Hill { ... };

1

char fetch;

int main()

{
using Jill::fetch; // put fetch into local namespace
double fetch; // Error! Already have a local fetch
cin >> fetch; // read a value into Jill::fetch
cin >> ::fetch; // read a value into global fetch

Because a using declaration adds the name to the local declarative region, this example
precludes creating another local variable by the name of fetch. Also like any other local
variable, fetch would override a global variable by the same name.

Placing a using declaration at the external level adds the name to the global namespace:

void other () ;

namespace Jill {
double bucket (double n) { ... }
double fetch;
struct Hill { ... };

Namespaces

}

using Jill::fetch; // put fetch into global namespace
int main()

{

cin >> fetch; // read a value into Jill::fetch
other ()

void other()

{

cout << fetch; // display Jill::fetch

A using declaration, then, makes a single name available. In contrast, the using direc-
tive makes all the names available. A using directive involves preceding a namespace name
with the keywords using namespace, and it makes all the names in the namespace avail-
able without the use of the scope-resolution operator:

using namespace Jack; // make all the names in Jack available

Placing a using directive at the global level makes the namespace names available glob-
ally. You’ve seen this in action a few times in this book in the following form:

#include <iostreams> // places names in namespace std
using namespace std; // make names available globally

Placing a using directive in a particular function makes the names available just in that
function. Here’s an example:

int main()

{

using namespace jack; // make names available in vorn()

You've seen this form often in this book with the std namespace.

One thing to keep in mind about using directives and using declarations is that they
increase the possibility of name conflicts. That is, if you have both namespace jack and
namespace jill available, and you use the scope-resolution operator, there is no ambiguity:
jack::pal = 3;
jill::pal =10;

The variables jack: :pal and §ill: :pal are distinct identifiers for distinct memory
locations. However, if you employ using declarations, the situation changes:
using jack::pal;

using jill::pal;
pal = 4; // which one? now have a conflict

487

488

Chapter 9 Memory Models and Namespaces

In fact, the compiler won'’t let you use both of these using declarations because of the
ambiguity that would be created.

using Directives Versus using Declarations

Using a using directive to import all the names from a namespace wholesale is not the
same as using multiple using declarations. It’s more like the mass application of a scope-
resolution operator. When you use a using declaration, it is as if the name is declared at
the location of the using declaration. If a particular name is already declared in a func-
tion, you can’t import the same name with a using declaration. When you use a using
directive, however, name resolution takes place as if you declared the names in the smallest
declarative region containing both the using declaration and the namespace itself. For the
following example, that would be the global namespace. If you use a using directive to
import a name that is already declared in a function, the local name will hide the name-
space name, just as it would hide a global variable of the same name. However, you can
still use the scope-resolution operator, as in the following example:

namespace Jill {

double bucket (double n) { ... }
double fetch;
struct Hill { ... };

1

char fetch; // global namespace

int main()

{
using namespace Jill; // import all namespace names
Hill Thrill; // create a type Jill::Hill structure
double water = bucket(2); // use Jill::bucket();
double fetch; // not an error; hides Jill::fetch
cin >> fetch; // read a value into the local fetch
cin >> ::fetch; // read a value into global fetch
cin >> Jill::fetch; // read a value into Jill::fetch

1

int foom()

{
Hill top; // ERROR
Jill::Hill crest; // valid

Here, in main (), the name Jill: :fetch is placed in the local namespace. It doesn’t
have local scope, so it doesn’t override the global fetch. But the locally declared fetch
hides both Ji11::fetch and the global fetch. However, both of the last two fetch vari-
ables are available if you use the scope-resolution operator.You might want to compare
this example to the preceding one, which uses a using declaration.

Namespaces

One other point of note is that although a using directive in a function treats the
namespace names as being declared outside the function, it doesn’t make those names
available to other functions in the file. Hence in the preceding example, the foom () func-
tion can’t use the unqualified Hil1 identifier.

Note

Suppose a namespace and a declarative region both define the same name. If you attempt
to use a using declaration to bring the namespace name into the declarative region, the
two names conflict, and you get an error. If you use a using directive to bring the name-
space name into the declarative region, the local version of the name hides the namespace
version.

Generally speaking, the using declaration is safer to use than a using directive because
it shows exactly what names you are making available. And if the name conflicts with a
local name, the compiler lets you know. The using directive adds all names, even ones
you might not need. If a local name conflicts, it overrides the namespace version, and you
aren’t warned. Also the open nature of namespaces means that the complete list of names
in a namespace might be spread over several locations, making it difficult to know exactly
which names you are adding.

This is the approach used for most of this book’s examples:

#include <iostreams>
int main()

{

using namespace std;

First, the iostream header file puts everything in the std namespace. Then, the using
directive makes the names available within main (). Some examples do this instead:

#include <iostreams>
using namespace std;
int main()

{

This exports everything from the std namespace into the global namespace. The
main rationale for this approach is expediency. It’s easy to do, and if your system doesn’t
have namespaces, you can replace the first two of the preceding code lines with the orig-
inal form:

#include <iostream.h>
However, namespace proponents hope that you will be more selective and use either

the scope-resolution operator or the using declaration. That is, you shouldn’t use the
following:

using namespace std; // avoid as too indiscriminate

489

490

Chapter 9 Memory Models and Namespaces

Instead, you should use this:

int x;
std::cin >> x;

std::cout << x << std::endl;

Or you could use this:

using std::cin;
using std::cout;
using std::endl;
int x;

cin >> X;

cout << X << endl;

You can use nested namespaces, as described in the following section, to create a

namespace that holds the using declarations you commonly use.

More Namespace Features
You can nest namespace declarations, like this:

namespace elements

{

namespace fire

{

int flame;

}

float water;

In this case, you refer to the flame variable as elements: : fire
can make the inner names available with this using directive:

using namespace elements::fire;

: : £lame. Similarly, you

Also you can use using directives and using declarations inside namespaces, like this:

namespace myth
using Jill::fetch;
using namespace elements;
using std::cout;
using std::cin;

Suppose you want to access Jill: :fetch. Because Jill: :fetch is now part of the

myth namespace, where it can be called fetch, you can access it this way:

std::cin >> myth::fetch;

Namespaces

Of course, because it is also part of the Jill namespace, you still can call it
Jill::fetch:

std::cout << Jill::fetch; // display value read into myth::fetch

Or you can do this, provided that no local variables conflict:

using namespace myth;
cin >> fetch; // really std::cin and Jill::fetch

Now consider applying a using directive to the myth namespace. The using directive
is transitive. We say that an operation op is transitive if A op B and B op C implies A op C.
For example, the > operator is transitive. (That is, A bigger than B and B bigger than C
implies A bigger than C.) In this context, the upshot is that the following statement places
both the myth and the elements namespaces in scope:

using namespace myth;

This single directive has the same effect as the following two directives:
using namespace myth;

using namespace elements;

You can create an alias for a namespace. For example, suppose you have a namespace
defined as follows:

namespace my very favorite things { ... };

You can make mvft an alias for my very favorite things by using the following
statement:

namespace mvft = my very favorite things;

You can use this technique to simplify using nested namespaces:

namespace MEF = myth::elements::fire;
using MEF::flame;

Unnamed Namespaces
You can create an unnamed namespace by omitting the namespace name:

namespace // unnamed namespace

int ice;
int bandycoot;

This code behaves as if it were followed by a using directive; that is, the names
declared in this namespace are in potential scope until the end of the declarative region
that contains the unnamed namespace. In this respect, names in an unnamed namespace
are like global variables. However, if a namespace has no name, you can’t explicitly use a
using directive or using declaration to make the names available elsewhere. In particular,

491

492

Chapter 9 Memory Models and Namespaces

you can’t use names from an unnamed namespace in a file other than the one that con-
tains the namespace declaration. This provides an alternative to using static variables with
internal linkage. Suppose, for example, you have this code:

static int counts; // static storage, internal linkage

int other();

int main()

{

int other ()

{

The namespace approach is to do this instead:

namespace

{

int counts; // static storage, internal linkage

}

int other();
int main ()

{

int other()

{

A Namespace Example

Let’s take a look at a multifile example that demonstrates some of the features of name-
spaces. The first file in this example (see Listing 9.11) is a header file that contains some
items normally found in header files—constants, structure definitions, and function proto-
types. In this case, the items are placed in two namespaces. The first namespace, pers, con-
tains a definition of a Person structure, plus prototypes for a function that fills a structure
with a person’s name and a function that displays the structure’s contents. The second
namespace, debts, defines a structure for storing the name of a person and the amount of
money owed to that person. This structure uses the Person structure, so the debts name-
space has a using directive to make the names in the pers namespace available in the
debts namespace. The debts namespace also contains some prototypes.

Namespaces 493

Listing 9.11 namesp.h.

// namesp.h

#include <string>

// create the pers and debts namespaces
namespace pers

{

struct Person
{
std::string fname;
std::string lname;
}i
void getPerson(Person &) ;
void showPerson(const Person &) ;

namespace debts
using namespace pers;
struct Debt
Person name;
double amount;
}i
void getDebt (Debt &) ;
void showDebt (const Debt &) ;
double sumDebts (const Debt ar[], int n);

The second file in this example (see Listing 9.12) follows the usual pattern of having a
source code file provide definitions for functions prototyped in a header file. The function
names, which are declared in a namespace, have namespace scope, so the definitions need
to be in the same namespace as the declarations. This is where the open nature of name-
spaces comes in handy. The original namespaces are brought in by including namesp.h
(refer to Listing 9.11).The file then adds the function definitions to the two namespaces,
as shown in Listing 9.12. Also the namesp . cpp file illustrates bringing in elements of the
std namespace with the using declaration and the scope-resolution operator.

Listing 9.12 namesp.cpp

// namesp.cpp -- namespaces
#include <iostream>
#include "namesp.h"

namespace pers

{

494 Chapter 9 Memory Models and Namespaces

using std::cout;

using std::cin;

void getPerson (Person & rp)

{
cout << "Enter first name: ";
cin >> rp.fname;
cout << "Enter last name: ";
cin >> rp.lname;

}

void showPerson(const Person & rp)

{

std::cout << rp.lname << ", " << rp.fname;

namespace debts
{
void getDebt (Debt & rd)
{
getPerson (rd.name) ;
std::cout << "Enter debt: ";
std::cin >> rd.amount;
void showDebt (const Debt & rd)
{
showPerson (rd.name) ;
std::cout <<": $" << rd.amount << std::endl;

}

double sumDebts (const Debt ar([], int n)
{
double total = 0;
for (int 1 = 0; 1 < n; i++)
total += ar[i].amount;
return total;

Finally, the third file of this program (see Listing 9.13) is a source code file that uses
the structures and functions declared and defined in the namespaces. Listing 9.13 shows
several methods of making the namespace identifiers available.

Listing 9.13 usenmsp.cpp

// usenmsp.cpp -- using namespaces
#include <iostream>
#include "namesp.h"

Namespaces

void other (void) ;
void another (void) ;
int main(void)

{

using debts: :Debt;

using debts::showDebt;

Debt golf = { {"Benny", "Goatsniff"}, 120.0 };
showDebt (golf) ;

other () ;

another () ;

return 0;

void other (void)
{
using std::cout;
using std::endl;
using namespace debts;
Person dg = {"Doodles", "Glister"};
showPerson (dg) ;
cout << endl;
Debt zippy[3];
int 1i;
for (1 = 0; 1 < 3; i++)
getDebt (zippy[i]) ;

for (1 = 0; 1 < 3; 1i++)

showDebt (zippy[i]) ;
cout << "Total debt: $" << sumDebts(zippy, 3) << endl;
return;

void another (void)
{
using pers::Person;
Person collector = { "Milo", "Rightshift" };
pers: :showPerson (collector) ;
std::cout << std::endl;

In Listing 9.13, main () begins by using two using declarations:

using debts: :Debt; // makes the Debt structure definition available
using debts::showDebt; // makes the showDebt function available

495

496

Chapter 9 Memory Models and Namespaces

Note that using declarations just use the name; for example, the second example here
doesn’t describe the return type or function signature for showDebt; it just gives the
name. (Thus, if a function were overloaded, a single using declaration would import all
the versions.) Also although both Debt and showDebt () use the Person type, it isn’t nec-
essary to import any of the Person names because the debt namespace already has a
using directive that includes the pers namespace.

Next, the other () function takes the less desirable approach of importing the entire
namespace with a using directive:

using namespace debts; // make all debts and pers names available to other()

Because the using directive in debts imports the pers namespace, the other () func-
tion can use the Person type and the showPerson () function.

Finally, the another () function uses a using declaration and the scope-resolution
operator to access specific names:

using pers::Person;;
pers: :showPerson (collector) ;

Here is a sample run of the program built from Listings 9.11,9.12, and 9.13:

Goatsniff, Benny: $120
Glister, Doodles

Enter first name: Arabella
Enter last name: Binx
Enter debt: 100

Enter first name: Cleve
Enter last name: Delaproux
Enter debt: 120

Enter first name: Eddie
Enter last name: Fiotox
Enter debt: 200

Binx, Arabella: $100
Delaproux, Cleve: $120
Fiotox, Eddie: $200

Total debt: $420
Rightshift, Milo

Namespaces and the Future
As programmers become more familiar with namespaces, common programming idioms
will emerge. Here are some current guidelines:

= Use variables in a named namespace instead of using external global variables.

= Use variables in an unnamed namespace instead of using static global variables.

» If you develop a library of functions or classes, place them in a namespace. Indeed,
C++ currently already calls for placing standard library functions in a namespace

Summary

called std.This extends to functions brought in from C. For example, the math.c
header file, which is C-compatible, doesn’t use namespaces, but the C++ cmath
header file should place the various math library functions in the std namespace.

= Use the using directive only as a temporary means of converting old code to
namespace usage.

» Don’t use using directives in header files; for one thing, doing so conceals which
names are being made available. Also the ordering of header files may affect
behavior. If you use a using directive, place it after all the preprocessor #include
directives.

» Preferentially import names by using the scope-resolution operator or a using
declaration.

» Preferentially use local scope instead of global scope for using declarations.

Bear in mind that the main motivation for using namespaces is to simplify manage-
ment of large programming projects. For simple, one-file programs, using a using direc-
tive is no great sin.

As mentioned earlier, changes in the header filenames reflect namespace changes.The
older-style header files, such as iostream.h, do not use namespaces, but the newer
iostream header file should use the std namespace.

Summary

C++ encourages the use of multiple files in developing programs. An effective organiza-
tional strategy is to use a header file to define user types and provide function prototypes
for functions to manipulate the user types.You should use a separate source code file for
the function definitions. Together, the header file and the source file define and imple-
ment the user-defined type and how it can be used. Then, main () and other functions
using those functions can go into a third file.

C++’s storage schemes determine how long variables remain in memory (storage
duration) and what parts of a program have access to them (scope and linkage). Automatic
variables are variables that are defined within a block, such as a function body or a block
within the body. They exist and are known only while the program executes statements
in the block that contains the definition. Automatic variables may be declared by using
the storage class specifier register or with no specifier at all, in which case the variable
is automatically automatic. The register specifier was a hint to the compiler that the
variable is heavily used, but that use is deprecated under C++11.

Static variables exist for the duration of a program. A variable defined outside any
function is known to all functions in the file following its definition (file scope) and is
made available to other files in the program (external linkage). For another file to use
such a variable, that file must declare it by using the extern keyword. A variable that is
shared across files should have a defining declaration in one file (extern needn’t be used
but it can be used if combined with initialization) and reference declarations in the other

497

498

Chapter 9 Memory Models and Namespaces

files (extern is used with no initialization.). A variable defined outside any function but
qualified with the keyword static has file scope but is not made available to other files
(internal linkage). A variable defined inside a block but qualified with the keyword
static is local to that block (local scope, no linkage) but retains its value for the duration
of the program.

By default, C++ functions have external linkage, so they can be shared across files. But
functions qualified with the keyword static have internal linkage and are confined to
the defining file.

Dynamic memory allocation and deallocation, using new and delete, uses the free
store, or heap, for data. The memory comes into use when new is called and is freed when
delete is called. The program uses pointers to keep track of these memory locations.

Namespaces let you define named regions in which you can declare identifiers. The
intent is to reduce name conflicts, particularly in large programs that use code from sev-
eral vendors.You can make available identifiers in a namespace by using the scope-resolu-
tion operator, by using a using declaration, or by using a using directive.

Chapter Review

1. What storage scheme would you use for the following situations?
a. homer is a formal argument (parameter) to a function.
b. The secret variable is to be shared by two files.

c. The topsecret variable is to be shared by the functions in one file but hid-
den from other files.

d. beencalled keeps track of how many times the function containing it has
been called.

2. Describe the differences between a using declaration and a using directive.

3. Rewrite the following so that it doesn’t use using declarations or using directives:

#include <iostream>
using namespace std;
int main()
{
double x;
cout << "Enter value: ";
while (! (cin >> x))
{
cout << "Bad input. Please enter a number: ";
cin.clear();
while (cin.get() != '\n')
continue;

Chapter Review

cout << "Value = " << X << endl;
return 0;

4. Rewrite the following so that it uses using declarations instead of the using
directive:
#include <iostream>
using namespace std;
int main()
{
double x;
cout << "Enter value: ";
while (! (cin >> x))

{

cout << "Bad input. Please enter a number: ";

cin.clear();
while (cin.get() != '\n')
continue;
cout << "Value = " << X << endl;
return 0;

5. Suppose you want the average (3,6) function to return an int average of the two
int arguments when it is called in one file, and you want it to return a double
average of the two int arguments when it is called in a second file in the same pro-
gram. How could you set this up?

6. What will the following two-file program display?
// filel.cpp
#include <iostreams>
using namespace std;
void other() ;
void another () ;
int x = 10;
int y;

int main()
cout << X << endl;
int x = 4;
cout << X << endl;
cout << y << endl;

499

500 Chapter 9 Memory Models and Namespaces

}

other () ;
another () ;
return 0;

void other ()
{
int y = 1;
cout << "Other: " << x << ", " << y << endl;

// file 2.cpp
#include <iostreams>
using namespace std;
extern int x;

namespace
{
int y = -4;
1
void another ()
{
cout << "another(): " << x << ", " << y << endl;
1

7. What will the following program display?
#include <iostreams>
using namespace std;
void other();
namespace nl

{
int x = 1;
}
namespace n2
{
int x = 2;
}
int main()
{

using namespace nl;
cout << X << endl;

{

Programming Exercises 501

int x = 4;
cout << X << ", " << nl::x << ", " << n2::x << endl;
}
using n2::x;
cout << X << endl;
other () ;
return 0;

void other()
using namespace n2;
cout << x << endl;
int x = 4;
cout << X << ", " << nl::xXx << ", " << n2::x << endl;
using n2::x;
cout << x << endl;

Programming Exercises

1. Here is a header file:
// golf.h -- for pe9-1.cpp

const int Len = 40;
struct golf
char fullname [Len] ;
int handicap;

Vi

// non-interactive version:

// function sets golf structure to provided name, handicap
// using values passed as arguments to the function

void setgolf (golf & g, const char * name, int hc);

// interactive version:

// function solicits name and handicap from user

// and sets the members of g to the values entered

// returns 1 if name is entered, 0 if name is empty string
int setgolf (golf & g);

502 Chapter 9 Memory Models and Namespaces

// function resets handicap to new value
void handicap(golf & g, int hc);

// function displays contents of golf structure
void showgolf (const golf & g);

Note that setgolf () is overloaded. Using the first version of setgolf () would
look like this:

golf ann;
setgolf (ann, "Ann Birdfree", 24);

The function call provides the information that’s stored in the ann structure. Using
the second version of setgolf () would look like this:

golf andy;
setgolf (andy) ;

The function would prompt the user to enter the name and handicap and store
them in the andy structure. This function could (but doesn’t need to) use the first
version internally.

Put together a multifile program based on this header. One file, named golf . cpp,
should provide suitable function definitions to match the prototypes in the header
file. A second file should contain main() and demonstrate all the features of the
prototyped functions. For example, a loop should solicit input for an array of golf
structures and terminate when the array is full or the user enters an empty string
for the golfer’s name.The main () function should use only the prototyped func-
tions to access the golf structures.

2. Redo Listing 9.9, replacing the character array with a string object. The program
should no longer have to check whether the input string fits, and it can compare
the input string to "" to check for an empty line.

3. Begin with the following structure declaration:

struct chaff

{

char dross[20];
int slag;

}i

Write a program that uses placement new to place an array of two such structures in
a bufter. Then assign values to the structure members (remembering to use

strcpy () for the char array) and use a loop to display the contents. Option 1 is to
use a static array, like that in Listing 9.10, for the buffer. Option 2 is to use regular
new to allocate the buffer.

Programming Exercises 503

4. Write a three-file program based on the following namespace:

namespace SALES
{
const int QUARTERS = 4;
struct Sales
{
double sales [QUARTERS] ;
double average;
double max;
double min;
}i
// copies the lesser of 4 or n items from the array ar
// to the sales member of s and computes and stores the
// average, maximum, and minimum values of the entered items;
// remaining elements of sales, if any, set to 0
void setSales(Sales & s, const double ar[], int n);
// gathers sales for 4 quarters interactively, stores them
// in the sales member of s and computes and stores the
// average, maximum, and minimum values
void setSales(Sales & s);
// display all information in structure s
void showSales (const Sales & s);

}

The first file should be a header file that contains the namespace. The second file
should be a source code file that extends the namespace to provide definitions for
the three prototyped functions. The third file should declare two sales objects. It
should use the interactive version of setSales () to provide values for one struc-
ture and the non-interactive version of setSales () to provide values for the sec-
ond structure. It should display the contents of both structures by using
showSales ().

This page intentionally left blank

Objects

In this chapter you’ll learn about the following:

Procedural and object-oriented programming
The concept of classes

How to define and implement a class

Public and private class access

Class data members

Class methods (also called class function members)
Creating and using class objects

Class constructors and destructors

const member functions

The this pointer

Creating arrays of objects

Class scope

Abstract data types

10

and Classes

Object-oriented programming (OOP) is a particular conceptual approach to designing
programs, and C++ has enhanced C with features that ease the way to applying that
approach. The following are the most important OOP features:

Abstraction

Encapsulation and data hiding
Polymorphism

Inheritance

Reeusability of code

506

Chapter 10 Objects and Classes

The class is the single most important C++ enhancement for implementing these fea-
tures and tying them together. This chapter begins an examination of classes. It explains
abstraction, encapsulation, and data hiding, and shows how classes implement these fea-
tures. It discusses how to define a class, provide a class with public and private sections,
and create member functions that work with the class data. Also this chapter acquaints
you with constructors and destructors, which are special member functions for creating
and disposing of objects that belong to a class. Finally, you meet the this pointer, an
important component of some class programming. The following chapters extend this
discussion to operator overloading (another variety of polymorphism) and inheritance,
the basis for reusing code.

Procedural and Object-Oriented Programming

Although in this book we have occasionally explored the OOP perspective on program-
ming, we’ve usually stuck pretty close to the standard procedural approach of languages
such as C, Pascal, and BASIC. Let’s look at an example that clarifies how the OOP out-
look difters from that of procedural programming.

As the newest member of the Genre Giants softball team, you've been asked to keep
the team statistics. Naturally, you turn to your computer for help. If you were a procedural
programmer, you might think along these lines:

Let’s see, | want to enter the name, times at bat, number of hits, batting averages (for
those who don’t follow baseball or softball, the batting average is the number of hits
divided by the player’s official number of times at bat; an at bat terminates when a
player gets on base or makes an out, but certain events, such as getting a walk, don’t
count as official times at bat), and all those other great basic statistics for each player.
Wait, the computer is supposed to make life easier for me, so | want to have it figure
out some of that stuff, such as the batting average. Also | want the program to report
the results. How should | organize this? | guess | should do things right and use func-
tions. Yeah, I'll make main () call a function to get the input, call another function to
make the calculations, and then call a third function to report the results. Hmmm,
what happens when | get data from the next game? | don’'t want to start from scratch
again. Okay, | can add a function to update the statistics. Golly, maybe I'll need a menu
inmain () to select between entering, calculating, updating, and showing the data.
Hmmm...how am | going to represent the data? | could use an array of strings to hold
the players’ names, another array to hold the at bats for each player, yet another array
to hold the hits, and so on. No, that’s dumb. | can design a structure to hold all the
information for a single player and then use an array of those structures to represent
the whole team.

In short, with a procedural approach, you first concentrate on the procedures you will
follow and then think about how to represent the data. (So that you don’t have to keep
the program running the whole season, you probably also want to be able to save data to
a file and read data from a file.)

Abstraction and Classes

Now let’s see how your perspective changes when you don your OOP hat (in an
attractive polymorphic design).You begin by thinking about the data. Furthermore, you
think about the data not only in terms of how to represent it, but in terms of how it’s to

be used:

Let’'s see, what am | keeping track of? A ball player, of course. So | want an object that
represents the whole player, not just her batting average or times at bat. Yeah, that’ll
be my fundamental data unit, an object representing the name and statistics for a
player. I'll need some methods to handle this object. Hmmm, | guess | need a method
to get basic information into this unit. The computer should calculate some of the
stuff, like the batting averages—I can add methods to do calculations. And the pro-
gram should do those calculations automatically, without the user having to remember
to ask to have them done. Also I'll need methods for updating and displaying the infor-
mation. So the user gets three ways to interact with the data: initialization, updating,
and reporting. That’s the user interface.

In short, with an OOP approach, you concentrate on the object as the user perceives
it, thinking about the data you need to describe the object and the operations that will
describe the user’s interaction with the data. After you develop a description of that inter-
face, you move on to decide how to implement the interface and data storage. Finally, you
put together a program to use your new design.

Abstraction and Classes

Life is full of complexities, and one way we cope with complexity is to frame simplifying
abstractions.You are a collection of more than an octillion atoms. Some students of the
mind would say that your mind is a collection of several semiautonomous agents. But it’s
much simpler to think of yourself as a single entity. In computing, abstraction is the cru-
cial step of representing information in terms of its interface with the user. That is, you
abstract the essential operational features of a problem and express a solution in those
terms. In the softball statistics example, the interface describes how the user initializes,
updates, and displays the data. From abstraction, it is a short step to the user-defined type,
which in C++ is a class design that implements the abstract interface.

What Is a Type?

Let’s think a little more about what constitutes a type. For example, what is a nerd? If you
subscribe to the popular stereotype, you might think of a nerd in visual terms—thick,
black-rimmed glasses, pocket protector full of pens, and so on. After a little reflection, you
might conclude that a nerd is better defined operationally—for example, in terms of how
he or she responds to an awkward social situation.You have a similar situation, if you
don’t mind stretched analogies, with a procedural language such as C. At first, you tend to
think of a data type in terms of its appearance—how it is stored in memory. A char, for

507

508

Chapter 10 Objects and Classes

example, is 1 byte of memory, and a double is often 8 bytes of memory. But a little reflec-
tion leads you to conclude that a data type is also defined in terms of the operations that
can be performed on it. For example, the int type can use all the arithmetic operations.
You can add, subtract, multiply, and divide integers.You can also use the modulus operator
(%) with them.

On the other hand, consider pointers. A pointer might very well require the same
amount of memory as an int. It might even be represented internally as an integer. But a
pointer doesn’t allow the same operations that an integer does.You can’t, for example,
multiply two pointers by each other. The concept makes no sense, so C++ doesn’t imple-
ment it. Thus, when you declare a variable as an int or as a pointer-to-float, youre not
just allocating memory—ryou are also establishing which operations can be performed
with the variable. In short, specifying a basic type does three things:

= It determines how much memory is needed for a data object.

= It determines how the bits in memory are interpreted. (A long and a £loat might
use the same number of bits in memory, but they are translated into numeric values
differently.)

= It determines what operations, or methods, can be performed using the data object.

For built-in types, the information about operations is built in to the compiler. But
when you define a user-defined type in C++, you have to provide the same kind of
information yourself. In exchange for this extra work, you gain the power and flexibility
to custom fit new data types to match real-world requirements.

Classes in C++

A class is a C++ vehicle for translating an abstraction to a user-defined type. It combines
data representation and methods for manipulating that data into one neat package. Let’s
look at a class that represents stocks.

First, you have to think a bit about how to represent stocks.You could take one share
of stock as the basic unit and define a class to represent a share. However, that implies
that you would need 100 objects to represent 100 shares, and that’s not practical. Instead,
you can represent a person’s current holdings in a particular stock as a basic unit. The
number of shares owned would be part of the data representation. A realistic approach
would have to maintain records of such things as initial purchase price and date of pur-
chase for tax purposes. Also it would have to manage events such as stock splits. That
seems a bit ambitious for a first effort at defining a class, so you can instead take an ideal-
ized, simplified view of matters. In particular, you can limit the operations you can per-
form to the following:

= Acquire stock in a company.

Buy more shares of the same stock.
Sell stock.
Update the per-share value of a stock.

Display information about the holdings.

Abstraction and Classes

You can use this list to define the public interface for the stock class. (And you can add
additional features later if you’re interested.) To support this interface, you need to store
some information. Again, you can use a simplified approach. For example, don’t worry
about the U.S. practice of evaluating stocks in multiples of eighths of a dollar. (Apparently
the New York Stock Exchange must have seen this simplification in a previous edition of
the book because it has decided to change over to the system used here.) Here’s a list of
information to store:

= Name of company
= Number of stocks owned
= Value of each share

= Total value of all shares
Next, you can define the class. Generally, a class specification has two parts:

» A class declaration, which describes the data component, in terms of data members,
and the public interface, in terms of member functions, termed methods

» The class method definitions, which describe how certain class member functions are
implemented

Roughly speaking, the class declaration provides a class overview, whereas the method
definitions supply the details.

What Is an Interface?

An interface is a shared framework for interactions between two systems—for instance,
between a computer and a printer or between a user and a computer program. For example,
the user might be you and the program might be a word processor. When you use the word
processor, you don’t transfer words directly from your mind to the computer memory.
Instead, you interact with the interface provided by the program. You press a key, and the
computer shows you a character on the screen. You move the mouse, and the computer
moves a cursor on the screen. You click the mouse accidentally, and something weird hap-
pens to the paragraph you were typing. The program interface manages the conversion of
your intentions to specific information stored in the computer.

For classes, we speak of the public interface. In this case, the public is the program using
the class, the interacting system consists of the class objects, and the interface consists of
the methods provided by whoever wrote the class. The interface enables you, the program-
mer, to write code that interacts with class objects, and thus it enables the program to use
the class objects. For example, to find the number of characters in a string object, you
don’t open up the object to what is inside; you just use the size () method provided by the
class creators. It turns out that the class design denies direct access to the public user.
But the public is allowed to use the size () method. The size () method, then, is part of
the public interface between the user and a string class object. Similarly, the getline ()
method is part of the istream class public interface; a program using cin doesn’t tinker

509

510

Chapter 10 Objects and Classes

directly with the innards of a cin object to read a line of input; instead, getline () does
the work.

If you want a more personal relationship, instead of thinking of the program using a class
as the public user, you can think of the person writing the program using the class as the
public user. But in any case, to use a class, you need to know its public interface; to write a
class, you need to create its public interface.

Developing a class and a program using it requires several steps. Rather than take them
all at once, let’s break up the development into smaller stages. Typically, C++ programmers
place the interface, in the form of a class definition, in a header file and place the imple-
mentation, in the form of code for the class methods, in a source code file. So let’s be typi-
cal. Listing 10.1 presents the first stage, a tentative class declaration for a class called stock.
The file uses #ifndef, and so on, as described in Chapter 9, “Memory Models and Name-
spaces,” to protect against multiple file inclusions.

To help identify classes, this book follows a common, but not universal, convention of
capitalizing class names.You'll notice that Listing 10.1 looks like a structure declaration
with a few additional wrinkles, such as member functions and public and private sections.
We’ll improve on this declaration shortly (so don’t use it as a model), but first let’s see how
this definition works.

Listing 10.1 stock00.h

// stock00.h -- Stock class interface
// version 00

#ifndef STOCKOO_H_

#define STOCKO0_H_

#include <string>

class Stock // class declaration
{
private:
std::string company;
long shares;
double share_val;
double total val;
void set tot() { total val = shares * share val; }
public:
void acquire (const std::string & co, long n, double pr);
void buy(long num, double price);
void sell(long num, double price);
void update (double price);
void show () ;
}i // note semicolon at the end

#endif

Abstraction and Classes

You’ll get a closer look at the class details later, but first let’s examine the more general
features. To begin, the C++ keyword class identifies the code in Listing 10.1 as defining
the design of a class. (In this context the keywords class and typename are not synony-
mous the way they were in template parameters; typename can’t be used here.) The syntax
identifies Stock as the type name for this new class. This declaration enables you to declare
variables, called objects, or instances, of the Stock type. Each individual object represents a
single holding. For example, the following declarations create two Stock objects called
sally'and.solly:

Stock sally;
Stock solly;

The sally object, for example, could represent Sally’s stock holdings in a particular
company.

Next, notice that the information you decided to store appears in the form of class data
members, such as company and shares.The company member of sally, for example,
holds the name of the company, the share member holds the number of shares Sally
owns, the share_val member holds the value of each share, and the total val member
holds the total value of all the shares. Similarly, the desired operations appear as class func-
tion members (or methods), such as sell () and update ().A member function can be
defined in place—for example, set_tot ()—or it can be represented by a prototype, like
the other member functions in this class. The full definitions for the other member func-
tions come later in the implementation file, but the prototypes suffice to describe the
function interfaces. The binding of data and methods into a single unit is the most striking
feature of the class. Because of this design, creating a Stock object automatically establishes
the rules governing how that object can be used.

You've already seen how the istream and ostream classes have member functions,
such as get () and getline ().The function prototypes in the Stock class declaration
demonstrate how member functions are established. The iostream header file, for exam-
ple, has a getline () prototype in the istream class declaration.

Access Control

Also new are the keywords private and public.These labels describe access control for
class members. Any program that uses an object of a particular class can access the public
portions directly. A program can access the private members of an object only by using the
public member functions (or, as you’ll see in Chapter 11,“Working with Classes,” via a
friend function). For example, the only way to alter the shares member of the stock
class is to use one of the stock member functions. Thus, the public member functions act
as go-betweens between a program and an object’s private members; they provide the
interface between object and program. This insulation of data from direct access by a pro-
gram is called data hiding. (C++ provides a third access-control keyword, protected, which
we’ll discuss when we cover class inheritance in Chapter 13, “Class Inheritance.”) (See
Figure 10.1.) Whereas data hiding may be an unscrupulous act in, say, a stock fund
prospectus, it’s a good practice in computing because it preserves the integrity of the data.

511

512

Chapter 10 Objects and Classes

keyword private identifies class members
that can be accessed only through the public
member functions (data hiding)

keyword class
identifies
class definition
I
A\
class Stock
{
private:
char company[30];
int shares;
double share_val;
double total_val;
void set_tot() { total val = shares * share_val; }
L> public:
void acquire(const char * co, int n, double pr);
void buy(int num, double price);
void sell(int num, double price);
void update(double price);
void show();

the class name becomes the
name of this user-defined type class members can be
data types or functions

b

keyword public identifies class members
that constitute the public interface for
the class (abstraction)

Figure 10.1 The Stock class.

A class design attempts to separate the public interface from the specifics of the imple-
mentation. The public interface represents the abstraction component of the design. Gath-
ering the implementation details together and separating them from the abstraction is
called encapsulation. Data hiding (putting data into the private section of a class) is an
instance of encapsulation, and so is hiding functional details of an implementation in the
private section, as the Stock class does with set_tot ().Another example of encapsulation
is the usual practice of placing class function definitions in a separate file from the class
declaration.

OOP and C++

OOP is a programming style that you can use to some degree with any language. Certainly,
you can incorporate many OOP ideas into ordinary C programs. For example, Chapter 9 pro-
vides an example (see Listings 9.1, 9.2, 9.3) in which a header file contains a structure pro-
totype along with the prototypes for functions to manipulate that structure. The main ()
function simply defines variables of that structure type and uses the associated functions to
handle those variables; main () does not directly access structure members. In essence,
that example defines an abstract type that places the storage format and the function proto-
types in a header file, hiding the actual data representation from main ().

Abstraction and Classes

C++ includes features specifically intended to implement the OOP approach, so it enables
you to take the process a few steps further than you can with C. First, placing the data rep-
resentation and the function prototypes into a single class declaration instead of keeping
them separate unifies the description by placing everything in one class declaration. Sec-
ond, making the data representation private enforces the stricture that data is accessed
only by authorized functions. If in the C example main () directly accesses a structure
member, it violates the spirit of OOR but it doesn’t break any C language rules. However, try-
ing to directly access, say, the shares member of a Stock object does break a C++ lan-
guage rule, and the compiler will catch it.

Note that data hiding not only prevents you from accessing data directly, but it also
absolves you (in the roll as a user of the class) from needing to know how the data is rep-
resented. For example, the show () member displays, among other things, the total value of
a holding. This value can be stored as part of an object, as the code in Listing 10.1 does, or
it can be calculated when needed. From the standpoint of using the class, it makes no dif-
terence which approach is used. What you do need to know is what the different member
functions accomplish; that is, you need to know what kinds of arguments a member func-
tion takes and what kind of return value it has. The principle is to separate the details of
the implementation from the design of the interface. If you later find a better way to
implement the data representation or the details of the member functions, you can change
those details without changing the program interface, and that makes programs much eas-
ler to maintain.

Member Access Control: Public or Private?
You can declare class members, whether they are data items or member functions, either
in the public or the private section of a class. But because one of the main precepts of
OOP is to hide the data, data items normally go into the private section. The member
functions that constitute the class interface go into the public section; otherwise, you can’t
call those functions from a program. As the Stock declaration shows, you can also put
member functions in the private section.You can’t call such functions directly from a pro-
gram, but the public methods can use them. Typically, you use private member functions
to handle implementation details that don’t form part of the public interface.

You don’t have to use the keyword private in class declarations because that is the
default access control for class objects:

class World

{

float mass; // private by default
char name[20] ; // private by default
public:

void tellall (void) ;

}i

However, this book explicitly uses the private label in order to emphasize the concept
of data hiding.

513

514

Chapter 10 Objects and Classes

Classes and Structures

Class descriptions look much like structure declarations with the addition of member func-
tions and the public and private visibility labels. In fact, C++ extends to structures the
same features classes have. The only difference is that the default access type for a struc-
ture is public, whereas the default type for a class is private. C++ programmers com-
monly use classes to implement class descriptions while restricting structures to
representing pure data objects (often called plain-old data structures, or POD structures).

Implementing Class Member Functions

We still have to create the second part of the class specification: providing code for those
member functions represented by a prototype in the class declaration. Member function
definitions are much like regular function definitions. Each has a function header and a
function body. Member function definitions can have return types and arguments. But
they also have two special characteristics:

= When you define a member function, you use the scope-resolution operator (: :) to
identify the class to which the function belongs.

= Class methods can access the private components of the class.

Let’s look at these points now.

First, the function header for a member function uses the scope-resolution operator
(::) to indicate to which class the function belongs. For example, the header for the
update () member function looks like this:

void Stock::update (double price)

This notation means you are defining the update () function that is a member of the
Stock class. Not only does this identify update () as a member function, it means you can
use the same name for a member function for a different class. For example, an update ()
function for a Buffoon class would have this function header:

void Buffoon: :update ()

Thus, the scope-resolution operator resolves the identity of the class to which a
method definition applies. We say that the identifier update () has class scope. Other mem-
ber functions of the stock class can, if necessary, use the update () method without using
the scope-resolution operator. That’s because they belong to the same class, making
update () in scope. Using update () outside the class declaration and method definitions,
however, requires special measures, which we’ll get to soon.

One way of looking at method names is that the complete name of a class method
includes the class name. Stock: :update () is called the qualified name of the function. A
simple update (), on the other hand, is an abbreviation (the unqualified name) for the full
name—one that can be used just in class scope.

The second special characteristic of methods is that a method can access the private
members of a class. For example, the show () method can use code like this:

Abstraction and Classes

std::cout << "Company: " << company
<< " Shares: " << shares << endl
<< " GShare Price: $" << share val
<< " Total Worth: $" << total val << endl;

Here company, shares, and so on are private data members of the stock class. If you
try to use a nonmember function to access these data members, the compiler stops you
cold in your tracks. (However, friend functions, which Chapter 11 discusses, provide an
exception.)

With these two points in mind, we can implement the class methods as shown in
Listing 10.2. We’ve placed them in a separate implementation file, so the file needs to
include the stock00.h header file so that compiler can access the class definition. To pro-
vide more namespace experience, the code uses the std: : qualifier in some methods and
using declarations in others.

Listing 10.2 stock00.cpp

// stock00.cpp -- implementing the Stock class
// version 00

#include <iostream>

#include "stock00.h"

void Stock::acquire(const std::string & co, long n, double pr)
{
company = co;
if (n < 0)
{
std::cout << "Number of shares can’t be negative; "
<< company << " shares set to 0.\n";
shares = 0;
}
else
shares = n;
share_val = pr;
set_tot();

void Stock::buy(long num, double price)

if (num < 0)
std::cout << "Number of shares purchased can’t be negative. "
<< "Transaction is aborted.\n";

}

else

{

shares += num;

515

516 Chapter 10 Objects and Classes

share_val = price;
set_tot();

void Stock::sell(long num, double price)

{
using std::cout;
if (num < 0)

cout << "Number of shares sold can’t be negative. "
<< "Transaction is aborted.\n";
else if (num > shares)
cout << "You can’t sell more than you have! "
<< "Transaction is aborted.\n";
else
shares -= num;
share val = price;
set_tot();
void Stock::update (double price)
share val = price;
set_tot();
void Stock::show ()
std::cout << "Company: " << company
<< " GShares: " << shares << ‘\n’
<< " Share Price: $" << share_val
<< " Total Worth: $" << total val << ‘\n’;

Member Function Notes

The acquire () function manages the first acquisition of stock for a given company,
whereas buy () and sell () manage adding to or subtracting from an existing holding. The
buy () and sell () methods make sure that the number of shares bought or sold is not a
negative number. Also if the user attempts to sell more shares than he or she has, the

Abstraction and Classes

sell() function terminates the transaction. The technique of making the data private and
limiting access to public functions gives you control over how the data can be used; in this
case, it allows you to insert these safeguards against faulty transactions.

Four of the member functions set or reset the total val member value. Rather than
write this calculation four times, the class has each function call the set_tot () function.
Because this function is merely the means of implementing the code and not part of the
public interface, the class makes set_tot () a private member function. (That s,
set_tot () is a member function used by the person writing the class but not used by
someone writing code that uses the class.) If the calculation were lengthy, this could save
some typing and code space. Here, however, the main value is that by using a function call
instead of retyping the calculation each time, you ensure that exactly the same calculation
gets done. Also if you have to revise the calculation (which is not likely in this particular
case), you have to revise it in just one location.

Inline Methods

Any function with a definition in the class declaration automatically becomes an inline
function. Thus, Stock: :set_tot () is an inline function. Class declarations often use inline
functions for short member functions, and set_tot () qualifies on that account.

You can, if you like, define a member function outside the class declaration and still
make it inline. To do so, you just use the inline qualifier when you define the function in
the class implementation section:

class Stock

{

private:
void set_tot(); // definition kept separate
public:
}i
inline void Stock::set tot() // use inline in definition

{

total_val = shares * share_val;

The special rules for inline functions require that they be defined in each file in which
they are used. The easiest way to make sure that inline definitions are available to all files
in a multifile program is to include the inline definition in the same header file in which
the corresponding class is defined. (Some development systems may have smart linkers
that allow the inline definitions to go into a separate implementation file.)

Incidentally, according to the rewrite rule, defining a method within a class declaration is
equivalent to replacing the method definition with a prototype and then rewriting the
definition as an inline function immediately after the class declaration. That is, the original

517

518

Chapter 10 Objects and Classes

inline definition of set_tot () in Listing 10.1 is equivalent to the one just shown, with
the definition following the class declaration.

Which Object Does a Method Use?

Now we come to one of the most important aspects of using objects: how you apply a
class method to an object. Code such as this uses the shares member of an object:

shares += num;

But which object? That’s an excellent question! To answer it, first consider how you
create an object. The simplest way is to declare class variables:

Stock kate, joe;

This creates two objects of the Stock class, one named kate and one named joe.
Next, consider how to use a member function with one of these objects. The answer, as
with structures and structure members, is to use the membership operator:

kate.show () ; // the kate object calls the member function
joe.show () ; // the joe object calls the member function

The first call here invokes show () as a member of the kate object. This means the
method interprets shares as kate.shares and share _val as kate.share_val. Similarly,
the call joe.show () makes the show () method interpret shares and share_val as
joe.shares and joe.share val, respectively.

Note

When you call a member function, it uses the data members of the particular object used to
invoke the member function.

Similarly, the function call kate.sell () invokes the set_tot () function as if it were
kate.set_tot (), causing that function to get its data from the kate object.

Each new object you create contains storage for its own internal variables, the class
members. But all objects of the same class share the same set of class methods, with just
one copy of each method. Suppose, for example, that kate and joe are Stock objects. In
that case, kate.shares occupies